Skip to main content
Log in

Rethinking the description of water product in polyatomic OH/OD + XH (X ≡ D, Br, NH2 and GeH3) reactions: theory/experimental comparison

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Davis’ group and Setser’s group using different experimental techniques measured water vibrational distribution for OH/OD + XH → H2O/HOD + X hydrogen abstraction reactions (X ≡ D, Br, NH2, GeH3). Theoretically, this issue has been studied by several groups: different potential energy surfaces (PESs) have been developed for each system, and quasi-classical trajectory (QCT) and quantum mechanics (QM) calculations have been performed. However, important experimental/theoretical controversies still exist. In the present work, we have revisited and performed new kinetics and dynamics calculations, comparing the theoretical and experimental results on the same footing. In general, theoretical results reproduce reasonably well experimental rate constants and total vibrational energy released to water, ~ 50–60%, although they underestimate water bending excitation. In the present work, we analyse different causes of this theory/experiment discrepancy and propose different mechanisms to explain the water bending excitation for diatom–diatom and polyatomic systems. Finally, we reflect on the ability of QCT and QM calculations to provide reasonable (although not quantitative) predictions for polyatomic reactions and observe that even using full-dimensional QM calculations on very accurate PESs, agreement with the experiment is far from that reached in the case of triatomic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Strazisar BR, Lin C, Davis HF (2000) Science 290:958

    Article  CAS  PubMed  Google Scholar 

  2. Butkovskaya NI, Setser DW (2003) Int Rev Phys Chem 22:1

    Article  CAS  Google Scholar 

  3. Duchovic R, Schatz GC (1986) J Chem Phy. 84:2239

    Article  CAS  Google Scholar 

  4. Schatz GC (1988) Comput Phys Commun 51:135

    Article  CAS  Google Scholar 

  5. Corchado JC, Espinosa-Garcia J (2009) Phy. Chem Chem Phys 11:10157

    Article  CAS  Google Scholar 

  6. Schatz GC, Elgersma H (1980) Chem Phys Lett 73:21

    Article  CAS  Google Scholar 

  7. de Ochoa Aspuru G, Clary DC (1988) J Phys Chem A 102:9631

    Article  Google Scholar 

  8. Yang M, Zhang D, Collins M, Lee S (2001) J Chem Phys 115:174

    Article  CAS  Google Scholar 

  9. Wu G, Schatz GC, Lendvay G, Fang D, Harding L (2000) J Chem Phys 113:3150

    Article  CAS  Google Scholar 

  10. Chen J, Xu X, Xu X, Zhang DH (2013) J Chem Phys 138:154301

    Article  CAS  PubMed  Google Scholar 

  11. Shao K, Chen J, Zhao Z, Zhang DH (2016) J Chem Phys 145:071101

    Article  CAS  PubMed  Google Scholar 

  12. Clary DC, Nyman G, Hernandez R (1994) J Chem Phys 101:3704

    Article  CAS  Google Scholar 

  13. Nizamov B, Setser DW, Wang HB, Peslherbe GH, Hase WL (1996) J Chem Phys 105:9897

    Article  CAS  Google Scholar 

  14. Liu JY, Li ZS, Dai ZW, Huang XR, Sun CC (2001) J Phys Chem A 105:7707

    Article  CAS  Google Scholar 

  15. Oliveira-Filho AGS, Ornellas FR, Bowman JM (2014) J Phys Chem Lett 5:706

    Article  CAS  PubMed  Google Scholar 

  16. Monge-Palacios M, Rangel C, Espinosa-Garcia J (2013) J Chem Phys 138:084305

    Article  CAS  PubMed  Google Scholar 

  17. Monge-Palacios M, Corchado JC, Espinosa-Garcia J (2013) J Chem Phys 138:214306

    Article  CAS  PubMed  Google Scholar 

  18. Espinosa-Garcia J, Corchado JC, Butkovskaya NI, Setser DW (2019) Theor Chem Acc 138:119

    Article  CAS  Google Scholar 

  19. Espinosa-Garcia J, Rangel C, Corchado JC (2016) Phys Chem Chem Phys 18:16941

    Article  CAS  PubMed  Google Scholar 

  20. Olsson MHM, Mavri J, Warshel A (2006) Phil Trans R Soc B 361:1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duff JW, Truhlar DG (1975) J Chem Phys 62:2477

    Article  CAS  Google Scholar 

  22. Gray JC, Truhlar DG, Clemens L, Duff JW, Chapman FM, Morrell GO, Hayes EF (1978) J Chem Phys 69:240

    Article  CAS  Google Scholar 

  23. Hu X, Hase WL, Pirraglia Y (1991) J Comput Chem 2:1014

    Article  Google Scholar 

  24. Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu D-H, Peslherbe GH, Swamy KN, Van de Linde SR, Varandas AJC et al (1996) QCPE Bull 16:43

    Google Scholar 

  25. Czakó G, Bowman JM (2009) J Chem Phys 131:244302

    Article  CAS  PubMed  Google Scholar 

  26. Bonnet L, Espinosa-Garcia J (2010) J Chem Phys 133:64108

    Article  CAS  Google Scholar 

  27. Czakó G (2012) J Phys Chem A 116:7467

    Article  CAS  PubMed  Google Scholar 

  28. Espinosa-Garcia J, Corchado JC (2017) Phys Chem Chem Phys 19:1580

    Article  CAS  PubMed  Google Scholar 

  29. Hofacker GL, Levine RD (1971) Chem Phys Lett 9:617

    Article  CAS  Google Scholar 

  30. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99

    Article  CAS  Google Scholar 

  31. Zheng J, Zhang S, Lynch BJ, Corchado JC, Chuang Y-Y, Fast PL, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Truhlar DG (2010) POLYRATE-2010-A. University of Minnesota, Minneapolis

    Google Scholar 

  32. Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534

    Article  CAS  Google Scholar 

  33. Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized transition state theory. In: Baer M (ed) The theory of chemical reactions. CRC, Boca Raton

    Google Scholar 

  34. JANAF Thermochemical Tables, 3rd ed.; Chase MW Jr, Davies CA, Downey JR, Frurip DJ, McDonald RA, Syverud AN Eds.; (1985) National Bureau of Standards: Washington, Vol. 14

  35. Welsch R (2018) J Chem Phys 148:204304

    Article  CAS  PubMed  Google Scholar 

  36. Mielke SL, Allison TC, Truhlar DG, Shwenke DW (1996) J Phys Chem 100:13588

    Article  CAS  Google Scholar 

  37. Liu Y-P, Lu DH, Gonzalez-Lafont A, Truhlar DG, Garrett BC (1993) J Am Chem So. 115:7806

    Article  CAS  Google Scholar 

  38. Mielke SL, Garret BC, Fleming DG, Truhlar DG (2015) Mol Phys 113:160

    Article  CAS  Google Scholar 

  39. Gonzalez-Lavado E, Corchado JC, Suleimanov YV, Green WH, Espinosa-Garcia J (2014) J Phys Chem A 118:3243

    Article  CAS  PubMed  Google Scholar 

  40. Suleimanov YV, Espinosa-Garcia J (2016) J Phys Chem B 120:1418

    Article  CAS  PubMed  Google Scholar 

  41. Espinosa-Garcia J, Rangel C, Suleimanov YV (2017) Phys Chem Chem Phys 19:19341

    Article  CAS  PubMed  Google Scholar 

  42. Monge-Palacios M, Yang M, Espinosa-Garcıa J (2012) Phys Chem Chem Phys 14:4824

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Kawamata H, Liu K (2009) Science 325:303

    Article  CAS  PubMed  Google Scholar 

  44. Yang J, Zhang D, Jiang B, Dai D, Wu G, Zhang D, Yang X (2014) J Phys Chem Lett 5:1790

    Article  CAS  PubMed  Google Scholar 

  45. Yang J, Zhang D, Chen Z, Blauert F, Jiang B, Dai D, Wu G, Zhang D, Yang X (2015) J Chem Phys 143:044316

    Article  CAS  PubMed  Google Scholar 

  46. Espinosa-Garcia J, Bravo JL (2008) J Phys Chem A 112:6059

    Article  CAS  PubMed  Google Scholar 

  47. Espinosa-Garcia J (2008) Chem Phys Lett 454:158

    Article  CAS  Google Scholar 

  48. Czakó G, Bowman JM (2009) J Am Chem Soc 131:17534

    Article  CAS  PubMed  Google Scholar 

  49. Czakó G, Bowman JM (2011) Phys Chem Chem Phys 13:8306

    Article  CAS  PubMed  Google Scholar 

  50. Palma J, Manthe U (2015) J Phys Chem A 119:12209

    Article  CAS  PubMed  Google Scholar 

  51. Espinosa-Garcia J (2016) J Phys Chem A 120:5

    Article  CAS  PubMed  Google Scholar 

  52. Sun P, Zhang Z, Chen J, Liu S, Zhang DH (2018) J Chem Phys 149:064303

    Article  CAS  PubMed  Google Scholar 

  53. Castillo JF, Suleimanov YV (2017) Phys Chem Chem Phys 19:29170

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Li Y, Wang D (2017) Sci Rep 7:40314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. NIST Chemical Kinetics Database web page. Standard references database 17, Version 7.0 (Web Version), Release 1.6.8. data version 2015.9

  56. Bonnet L, Espinosa-García J, Corchado JC, Liu S, Zhang DH (2011) Chem Phys Lett 516:137

    Article  CAS  Google Scholar 

  57. Liu S, Xiao Ch, Wang T, Chen J, Yang T, Xu X, Zhang DH, Yang X (2012) Faraday Discuss 157:101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Junta de Extremadura and European Regional Development Fund, Spain (Projects No. GR18010 and IB16013). The authors thank Dr. de Oliveira-Filho and Prof. Bowman for sending us the PES of the OH + HBr reaction, Dr. Liu and Prof. Zhang for sending us the FI-NN PES of the OH + H2 reaction and Prof. Butkovskaya for sharing the revised experimental results of the OH/OD + HBr reactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Espinosa-Garcia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Garcia, J., García-Chamorro, M. & Corchado, J.C. Rethinking the description of water product in polyatomic OH/OD + XH (X ≡ D, Br, NH2 and GeH3) reactions: theory/experimental comparison. Theor Chem Acc 139, 63 (2020). https://doi.org/10.1007/s00214-020-2577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2577-0

Keywords

Navigation