Skip to main content
Log in

Determination of molecular properties for moscovium halides (McF and McCl)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Advanced relativistic quantum chemistry calculations were used for the first time to provide accurate determinations of fundamental molecular properties for two moscovium halides (McX, X = F and Cl). The recommended values presented here were obtained with the X2C-MMF-CCSD-T/RPF-4Z level of theory. Thus, we determined an equilibrium bond length (re) of 2.287 Å, an equilibrium dipole moment (μe) of 6.59 D and a harmonic vibrational frequency (ωe) of 405 cm−1 for McF. On the other hand, the results for McCl show re, μe and ωe values equal to 2.728 Å, 7.46 D and 244 cm−1, respectively. The same Mc+–X polarity is predicted in molecules of both halides. The equilibrium dissociation energies attained in X2C-MMF-(FS)CCSD/RPF-4Z calculations are 4.04 and 3.45 eV for McF and McCl, respectively. Therefore, the Mc–F and Mc–Cl bonds are predicted to be slightly stronger than Bi–F and Bi–Cl ones, respectively. Finally, the huge values obtained for dipole moments in the molecules studied strongly suggest that moscovium halides are predominantly ionic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Gao DD, Cao Z, Wang F (2016) J Phys Chem A 120:1231–1242

    Article  CAS  Google Scholar 

  2. Guo M, Cao Z, Wang Z, Wang F (2018) J Chem Phys 148:044304

    Article  Google Scholar 

  3. Schädel M (2015) Philos Trans R Soc A 373:20140191

    Article  Google Scholar 

  4. Pershina V (2015) Nucl Phys A 944:578–613

    Article  CAS  Google Scholar 

  5. Oganessian YT et al (2004) Phys Rev C 69:021601

    Article  Google Scholar 

  6. Öhrström L, Reedijk J (2016) Pure Appl Chem 88:1225–1229

    Article  Google Scholar 

  7. Fricke B, McMinn J (1976) Naturwissenschaften 63:162–170

    Article  CAS  Google Scholar 

  8. Han YK, Bae C, Son SK, Lee YS (2000) J Chem Phys 112:2684–2691

    Article  CAS  Google Scholar 

  9. Alvarez-Thon L, Inostroza-Pino N (2018) J Comput Chem 39:862–868

    Article  CAS  Google Scholar 

  10. Santiago RT, Haiduke RLA (2018) Int J Quantum Chem 118:e25585

    Article  Google Scholar 

  11. Pyykkö P (2012) Annu Rev Phys Chem 63:45–64

    Article  Google Scholar 

  12. Sikkema J, Visscher L, Saue T, Iliaš M (2009) J Chem Phys 131:124116

    Article  Google Scholar 

  13. Dyall KG (2012) Theor Chem Acc 131:1172

    Article  Google Scholar 

  14. Dyall KG (2016) Theor Chem Acc 135:128

    Article  Google Scholar 

  15. Teodoro TQ, da Silva ABF, Haiduke RLA (2014) J Chem Theory Comput 10:3800–3806

    Article  CAS  Google Scholar 

  16. Teodoro TQ, da Silva ABF, Haiduke RLA (2014) J Chem Theory Comput 10:4761–4764

    Article  CAS  Google Scholar 

  17. Teodoro TQ, Visscher L, da Silva ABF, Haiduke RLA (2017) J Chem Theory Comput 13:1094–1101

    Article  CAS  Google Scholar 

  18. Deegan MJO, Knowles PJ (1994) Chem Phys Lett 227:321–326

    Article  CAS  Google Scholar 

  19. Jensen HJA, Bast R, Saue T, Visscher L, with contributions from Bakken V, Dyall KG, Dubillard S, EkströmU et al (2016) DIRAC, a relativistic ab initio electronic structure program, Release DIRAC16. http://www.diracprogram.org

  20. Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207–224

    Article  CAS  Google Scholar 

  21. Visscher L (1997) Theor Chem Acc 98:68–70

    Article  CAS  Google Scholar 

  22. Pyykkö P, Atsumi M (2009) Chem Eur J 15:186–197

    Article  Google Scholar 

  23. Haynes WM (ed) (2017) CRC handbook of chemistry and physics (internet version 2017), 97th edn. CRC Press, Boca Raton

    Google Scholar 

  24. Stoll H, Metz B, Dolg M (2002) J Comput Chem 23:767–778

    Article  CAS  Google Scholar 

  25. Borchevsky A, Pašteka LF, Pershina V, Eliav E, Kaldor U (2015) Phys Rev A 91:020501

    Article  Google Scholar 

  26. Desclaux JP (1973) At Data Nucl Data Tables 12:311–406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge FAPESP (São Paulo Research Foundation) for financial support (2010/18743-1 and 2014/23714-1). RTS and RLAH are also grateful to CNPq (Brazilian agency) for a fellowship funding and a research Grant (305366/2015-7), respectively. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto L. A. Haiduke.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago, R.T., Haiduke, R.L.A. Determination of molecular properties for moscovium halides (McF and McCl). Theor Chem Acc 139, 60 (2020). https://doi.org/10.1007/s00214-020-2573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2573-4

Keywords

Navigation