Skip to main content
Log in

The nature of the chemical bond in NO3, neutral and anion

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The nitrate radical, NO3, a molecular species of huge environmental importance has been an active research theme for at least a century at both the experimental and theoretical levels. Its ground-state symmetry, C2v or D3h, has puzzled the scientific community for nearly two decades, while its fascinating spectral profile is complicated due to intense vibronic couplings between its first five electronic states. In the present work, we report an elucidation of its chemical bonding based on a NO-to-NO2-to-NO3 formation sequence. We conclude that there are three different chemical bonds between N and the three O atoms, one double σ, π with an O (3P), one dative σ with an excited O (~ 1D) and finally a regular σ with a ground O (3P). Its anion, NO3, results naturally by grafting an additional electron to the ground neutral state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3 
Fig. 2
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Fig. 3
Scheme 10
Scheme 11

Similar content being viewed by others

References

  1. Chappuis J (1882) Ann Sci ENS 11:137–186

    Google Scholar 

  2. Hautefeuille P, Chappuis J (1881) C R Acad Sci Paris 92:80

    Google Scholar 

  3. Atmospheric Ozone 1985: assessment of our understanding of the processes controlling its present distribution and change, World Meteorological Organization, Global Ozone Research and Monitoring Project-Report No. 16 (NASA, Washington DC, 1985), pp 32–35

  4. Johnston HS, Podolski J (1978) Rev Geophys Space Phys 16:491–519

    Article  CAS  Google Scholar 

  5. Seinfield H (1989) Science 243:745–752

    Article  Google Scholar 

  6. Wayne RP, Barnes I, Biggs P, Burrows JP, Canosa-Mas CE, Hjorth JE, LeBras G, Moortgat GK, Perner D, Poulet G, Restelli G, Sidebottom H (1991) Atmos Environ 25A:1–203

    Article  CAS  Google Scholar 

  7. Wayne RP (1991) Chemistry of atmospheres. Clarendon, Oxford

    Google Scholar 

  8. Platt U, Perner D, Winer AM, Harris GW, Pitts JV Jr (1980) Geophys Res Lett 7:89–92

    Article  CAS  Google Scholar 

  9. Noxon JF, Norton RB, Marovich E (1980) Geophys Res Lett 7:125–128

    Article  CAS  Google Scholar 

  10. Platt U, Heinz F (1994) Isr J Chem 34:289–300

    Article  CAS  Google Scholar 

  11. Atkinson R (2000) Atmos Environ 34:2063–2101

    Article  CAS  Google Scholar 

  12. Monks PS (2005) Chem Soc Rev 34:376–395

    Article  CAS  PubMed  Google Scholar 

  13. Siegbahn PEM (1985) J Comput Chem 6:182–188

    Article  CAS  Google Scholar 

  14. Boehm RC, Lohr LL (1989) J Phys Chem 93:3430–3433

    Article  CAS  Google Scholar 

  15. Davy RD, Schaefer HF III (1989) J Chem Phys 91:4410–4411

    Article  CAS  Google Scholar 

  16. Kaldor U (1990) Chem Phys Lett 166:599–601

    Article  CAS  Google Scholar 

  17. Kim B, Hammond BL, Lester WA, Johnston HS (1990) Chem Phys Lett 168:131–134

    Article  CAS  Google Scholar 

  18. Stanton JF, Gauss J, Bartlett RJ (1991) J Chem Phys 94:4084–4087

    Article  CAS  Google Scholar 

  19. Stanton JF, Gauss J, Bartlett RJ (1992) J Chem Phys 97:5554–5559

    Article  CAS  Google Scholar 

  20. Mayer M, Cederbaum LS, Kӧppel H (1994) J Chem Phys 100:899–911

    Article  CAS  Google Scholar 

  21. Eisfeld W, Morokuma K (2000) J Chem Phys 113:5587–5597

    Article  CAS  Google Scholar 

  22. Cohen RD, Sherrill CD (2001) J Chem Phys 114:8257–8269

    Article  CAS  Google Scholar 

  23. Eisfeld W, Morokuma K (2001) J Chem Phys 114:9430–9440

    Article  CAS  Google Scholar 

  24. Viel A, Eisfeld W (2004) J Chem Phys 120:4603–4613

    Article  CAS  PubMed  Google Scholar 

  25. Mahapatra S, Eisfeld W, Kӧppel H (2007) Chem Phys Lett 441:7–15

    Article  CAS  Google Scholar 

  26. Stanton JF (2007) J Chem Phys 126:134309

    Article  CAS  PubMed  Google Scholar 

  27. Glendening ED, Halpern AM (2007) J Chem Phys 127:164307

    Article  CAS  PubMed  Google Scholar 

  28. Faraji S, Kӧppel H, Eisfeld W, Mahapatra S (2008) Chem Phys 347:110–119

    Article  CAS  Google Scholar 

  29. Stanton JF (2009) Mol Phys 107:1059–1075

    Article  CAS  Google Scholar 

  30. Stanton JF, Okumura M (2009) Phys Chem Chem Phys 11:4742–4744

    Article  CAS  PubMed  Google Scholar 

  31. Grein F (2013) J Chem Phys 138:204305

    Article  CAS  PubMed  Google Scholar 

  32. Eisfeld W, Vieuxmaire O, Viel A (2014) J Chem Phys 140:224109

    Article  CAS  PubMed  Google Scholar 

  33. Homayoon Z, Bowman JM (2014) J Chem Phys 141:161104

    Article  CAS  PubMed  Google Scholar 

  34. Mukherjee B, Mukherjee S, Sardar S, Shamasundar KR, Adhikari S (2017) Mol Phys 115:2833–2848

    Article  CAS  Google Scholar 

  35. Mukherjee B, Mukherjee S, Adhikari S (2017) J Phys Chem A 121:6314–6326

    Article  CAS  PubMed  Google Scholar 

  36. Eisfeld W, Viel A (2017) J Chem Phys 146:034303

    Article  CAS  PubMed  Google Scholar 

  37. Viel A, Eisfeld W (2018) Chem Phys 509:81–90

    Article  CAS  Google Scholar 

  38. Mukherjee B, Mukherjee S, Sardar S, Shamasundar KR, Adhikari S (2018) Chem Phys 515:350–359

    Article  CAS  Google Scholar 

  39. Nelson HH, Pasternack L, McDonald JR (1983) J Phys Chem 87:1286–1288

    Article  CAS  Google Scholar 

  40. Ishiwata T, Fujiwara L, Naruge Y, Obi K, Tanaka I (1983) J Phys Chem 87:1349–1352

    Article  CAS  Google Scholar 

  41. Ishiwata T, Tanaka I, Kawaguchi K, Hirota E (1985) J Chem Phys 82:2196–2205

    Article  CAS  Google Scholar 

  42. Friedl RR, Sander SP (1987) J Phys Chem 91:2721–2726

    Article  CAS  Google Scholar 

  43. Kawaguchi K, Hirota E, Ishiwata T, Tanaka I (1990) J Chem Phys 93:951–956

    Article  CAS  Google Scholar 

  44. Weaver A, Arnold DW, Bradforth SE, Neumark DM (1991) J Chem Phys 94:1740–1751

    Article  CAS  Google Scholar 

  45. Monks PS, Stief LJ, Krauss M, Kuo SC, Zhang Z, Klemm RB (1994) J Phys Chem 98:10017–10022

    Article  CAS  Google Scholar 

  46. Kawaguchi K, Ishiwata T, Tanaka I, Hirota E (1991) Chem Phys Lett 180:436–440

    Article  CAS  Google Scholar 

  47. Kawaguchi K, Ishiwata T, Hirota E, Tanaka I (1998) Chem Phys 231:193–198

    Article  CAS  Google Scholar 

  48. Ishiwata T, Tanaka I, Kawaguchi K, Hirota E (1992) J Mol Spectrosc 153:167–180

    Article  CAS  Google Scholar 

  49. Wang D, Jiang P, Qian X, Hong G (1997) J Chem Phys 106:3003–3006

    Article  CAS  Google Scholar 

  50. Kim BS, Hunter PL, Johnston HS (1992) J Chem Phys 96:4057–4067

    Article  CAS  Google Scholar 

  51. Carter RT, Schmidt KF, Bitto H, Huber JR (1996) Chem Phys Lett 257:297–302

    Article  CAS  Google Scholar 

  52. Hirota E, Ishiwata T, Kawaguchi K, Fujitake M, Obashi V, Tanaka I (1997) J Chem Phys 107:2829–2838

    Article  CAS  Google Scholar 

  53. Okumura M, Stanton JF, Deev A, Sommar J (2006) Phys Scr 73:C64–C70

    Article  CAS  Google Scholar 

  54. Hirota E, Kawaguchi K, Ishiwata T, Tanaka I (1991) J Chem Phys 95:771–775

    Article  CAS  Google Scholar 

  55. Nelson HH, Pasternack L, McDonald JR (1983) J Chem Phys 79:4279–4284

    Article  CAS  Google Scholar 

  56. Jacox ME, Thompson WE (2008) J Chem Phys 129:204306

    Article  CAS  PubMed  Google Scholar 

  57. Jacox ME, Thompson WE (2010) J Phys Chem A 114:4712–4718

    Article  CAS  PubMed  Google Scholar 

  58. Kawaguchi K, Shimizu N, Fujimori R, Tang J, Ishiwata T, Tanaka I (2011) J Mol Spectrosc 268:85–92

    CAS  Google Scholar 

  59. Simmons CS, Ichino T, Stanton JF (2012) J Phys Chem Lett 3:1946–1950

    Article  CAS  Google Scholar 

  60. Takematsu K, Eddingsaas NC, Robichaud DJ, Okumura M (2013) Chem Phys Lett 555:57–63

    Article  CAS  Google Scholar 

  61. Fujimori R, Shimizu N, Tang J, Ishiwata T, Kawaguchi K (2013) J Mol Spectrosc 283:10–17

    Article  CAS  Google Scholar 

  62. Kawaguchi K, Fujimori R, Tang J, Ishiwata T (2013) J Phys Chem A 117:13732–13742

    Article  CAS  PubMed  Google Scholar 

  63. Tada K, Kashihara W, Baba M, Ishiwata T, Hirota E, Kasahara S (2014) J Chem Phys 141:184307

    Article  CAS  PubMed  Google Scholar 

  64. Hirota E (2015) J Mol Spectrosc 310:99–104

    Article  CAS  Google Scholar 

  65. Codd T, Chen M-W, Roudjane M, Stanton JF, Miller RA (2015) J Chem Phys 142: 184305

    Article  CAS  PubMed  Google Scholar 

  66. Tada K (2019) Chem Phys 524:21–25

    Article  CAS  Google Scholar 

  67. Sharma K, Garner S, Miller TA, Stanton JF (2019) J Phys Chem A 123:4990–5004

    Article  CAS  PubMed  Google Scholar 

  68. Kӧppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59–246

    Google Scholar 

  69. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  70. MOLPRO is a package of ab initio programs written by Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Györffy W, Kats D, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2008) MOLPRO, version 2012.1, a package of ab initio programs. University College Cardiff Consultants Limited, Cardiff

  71. Huber KP, Herzberg G (1979) Constants of diatomic molecules (data prepared by J.W. Gallagher and R.D. Johnson, III). In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg. https://doi.org/10.18434/t4d303

  72. Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2018) NIST atomic spectra database (ver. 5.6.1), https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg. https://doi.org/10.18434/T4W30F

  73. Kalemos A, Mavridis A (2008) J Chem Phys 129:054312

    Article  CAS  PubMed  Google Scholar 

  74. Kalemos A (2016) J Phys Chem A 120:169–170

    Article  CAS  Google Scholar 

  75. Hay PJ (1973) J Chem Phys 58:4706–4707

    Article  CAS  Google Scholar 

  76. Jackels CF, Davidson ER (1975) J Chem Phys 63:4672–4677

    Article  CAS  Google Scholar 

  77. Jackels CF, Davidson ER (1976) J Chem Phys 64:2908–2917

    Article  CAS  Google Scholar 

  78. Jackels CF, Davidson ER (1976) J Chem Phys 65:2941–2957

    Article  CAS  Google Scholar 

  79. Shih S-K, Peyerimhoff SD, Buenker RJ (1977) Chem Phys Lett 46:201–207

    Article  CAS  Google Scholar 

  80. Xie Y, Davy RD, Yates BF, Blabous CP III, Yamaguchi Y, Schaefer HF III (1989) Chem Phys 135:179–186

    Article  CAS  Google Scholar 

  81. Blabous CP III, Yates BF, Xie Y, Schaefer HF III (1990) J Chem Phys 93:8105–8109

    Article  Google Scholar 

  82. Burton NA, Yamaguchi Y, Alberts IL, Schaefer HF III (1991) J Chem Phys 95:7466–7478

    Article  CAS  Google Scholar 

  83. Crawford TD, Stanton JF, Szalay PG, Schaefer HF III (1997) J Chem Phys 107:2525–2528

    Article  CAS  Google Scholar 

  84. Mahapatra S, Kӧppel H, Cederbaum LS, Stampfuß P, Wenzel W (2000) Chem Phys 259:211–226

    Article  CAS  Google Scholar 

  85. Kurkal V, Fleurat-Lessard P, Schinke R (2003) J Chem Phys 119:1489–1501

    Article  CAS  Google Scholar 

  86. Varandas AJC (2003) J Chem Phys 119:2596–2613

    Article  CAS  Google Scholar 

  87. Bera PP, Yamaguchi Y, Schaefer HF III (2007) J Chem Phys 127:174303

    Article  CAS  PubMed  Google Scholar 

  88. Grein F (2008) Chem Phys Lett 455:124–130

    Article  CAS  Google Scholar 

  89. Mota VC, Caridale PJSB, Varandas AJC (2012) J Phys Chem A 116:3023–3034

    Article  CAS  PubMed  Google Scholar 

  90. Sardar S, Mukherjee S, Paul AK, Adhikari S (2013) Chem Phys 416:11–20

    Article  CAS  Google Scholar 

  91. Mukherjee S, Mukherjee B, Sardar S, Adhikari S (2015) J Chem Phys 143:244307

    Article  CAS  PubMed  Google Scholar 

  92. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  93. Babin MC, DeVine JA, DeWitt M, Stanton JF, Neumark DM (2020) J Phys Chem Lett 11:395–400

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Kalemos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalemos, A. The nature of the chemical bond in NO3, neutral and anion. Theor Chem Acc 139, 50 (2020). https://doi.org/10.1007/s00214-020-2563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2563-6

Keywords

Navigation