Skip to main content

Advertisement

Log in

Hydrogen-bonded contact ion pair in gaseous chloroethane: a multi-reference configuration interaction with singles and doubles (MR-CISD) study including extensivity corrections

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Details concerning the energetics and structure of the ion pair in gaseous chloroethane, obtained at the multi-reference configuration interaction with singles and doubles (MR-CISD) level, are given. It is formed in the third excited state (31A′), and it can be classified as a hydrogen-bonded contact ion pair, although from its total binding energy of 3.28 eV (including extensivity corrections, at the MR-CISD + Q level with the aug-cc-pVTZ basis set, and including zero-point energy corrections) only 0.14 eV is due to an underlying hydrogen bond. It is a highly polar structure, with a dipole moment of 9.56 D. As compared to previous systems for which the same type of bond has been observed, it has a much lower hydrogen-bond energy and a much larger distance between the charge centers. The three lowest frequency vibrational modes of the HBCIP correspond to intermolecular cation–anion modes. The structure here obtained brings important structural questions for HCFCs derived from chloroethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rossberg M, Lendle W, Pfleiderer G, Tögel A, Eberhard-Ludwig Dreher, Langer E, Rassaerts H, Strack H, Cook R, Beck U, Karl-August Lipper, Loser E, Beutel KK, Mann T (2006) Ullmanns’ Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, p 26

    Google Scholar 

  2. Rasmussen PP, Shockley JC, Hargadine DA (1994) Hydrogeology and water-quality conditions at the city of Olathe Landfill, East-Central Kansas, 1990-93. In: U. S. geological survey. Water-Resources Investigations Report 94-4166, Lawrence, Kansas

  3. Tschikardt M (2013) The MAK-Collection Part III. Air Monitoring Methods DFG, Deutsche Forschungsgemeinschaft, Wiley-VCH Verlag GmbH & Co, KGaA, p 2

    Google Scholar 

  4. Public Health Statement, Chloroethane. Agency for Toxic Substances and Disease Registry. December 1998. https://www.atsdr.cdc.gov/ToxProfiles/tp105-c1-b.pdf

  5. Miller M, Scully C (2015) Mosby’s textbook of dental nursing, 2nd edn. Elsevier, Edinburgh

    Google Scholar 

  6. Callahan MA, Simak MW, Gabel NW, May IP, Fowler CF, Freed JR, Jennings P, Durfee RL, Whitmore FC, Maestri B, Mabey WR, Holt BR, Gould C (1979) Water-related environmental fate of 129 priority pollutants, vol II, halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics, phthalate esters, polycyclic aromatic hydrocarbons, nitrosamines, and miscellaneous compounds. Office of Water Planning and Standards Office of Water and Waste Management. U. S. Environmental Protection Agency. Washington D. C. 20460, pp 42–43

  7. Calm JM, Hourahan GC (2001) Refrigerant data summary. engineered systems 18(11):74 − 88. https://www.usgbc.org/drupal/legacy/usgbc/docs/LEED_tsac/Calm_Hourahan-Refrigerant_Data-2001.pdf

  8. Wuebbels DJ (2015) Ozone depletion and related topics - ozone depletion potentials. Encyclopedia of atmospheric sciences, vol 4, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  9. de Medeiros VC, de Andrade RB, Leitão EFV, Ventura E, Bauerfeldt GF, Barbatti M, do Monte SA SA (2016) Photochemistry of CH3Cl: dissociation and CH···Cl hydrogen bond formation. J Am Chem Soc 138:272–280. https://doi.org/10.1021/jacs.5b10573

    Article  CAS  PubMed  Google Scholar 

  10. Rogers NJ, Simpson MJ, Tuckett RP, Dunn KF, Latimer CJ (2010) Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br. Phys Chem Chem Phys 12:10971–10980. https://doi.org/10.1039/C0CP00234H

    Article  CAS  PubMed  Google Scholar 

  11. Simpson MJ, Tuckett RP (2011) Vacuum-UV negative photoion spectroscopy of gas-phase polyatomic molecules. Int Rev Phys Chem 30:197–273. https://doi.org/10.1080/0144235X.2011.581000

    Article  CAS  Google Scholar 

  12. Rodrigues GP, de Lima TML, de Andrade RB, Ventura E, do Monte SA, Barbatti M (2019) Photoinduced formation of H-bonded ion pair in HCFC-133a. J Phys Chem A 123:1953–1961. https://doi.org/10.1021/acs.jpca.8b12482

    Article  CAS  Google Scholar 

  13. de Medeiros VC, de Andrade RB, Rodrigues GP, Bauerfeldt GF, Ventura E, Barbatti M, do Monte SA (2018) Photochemistry of CF3Cl: quenching of charged fragments is caused by nonadiabatic effects. J Chem Theor Comput 14:4844–4855. https://doi.org/10.1021/acs.jctc.8b00457

    Article  CAS  Google Scholar 

  14. Suto K, Sato Y, Reed CL, Skorokhodov V, Matsumi Y, Kawasaki M (1997) Ion fragment imaging of the ion-pair photodissociation of CH3Cl, CH3Br, C2H5Cl, and C2H5Br at 118 nm. J Phys Chem A 101:1222–1226. https://doi.org/10.1021/jp962883f

    Article  CAS  Google Scholar 

  15. Hase WL, Schlegel HB, Balbyshev V, Page M (1996) An ab initio study of the transition state and forward and reverse rate constants for C2H5 ↔ H + C2H4. J Phys Chem 100:5354–5361. https://doi.org/10.1021/jp9528875

    Article  CAS  Google Scholar 

  16. Andrei H-S, Solcà N, Dopfer O (2008) IR spectrum of the ethyl cation: evidence for the nonclassical structure. Angew Chem Int Ed 47:395–397. https://doi.org/10.1002/anie.200704163

    Article  CAS  Google Scholar 

  17. Klopper W, Kutzelnigg W (1990) MP2-R12 calculations on the relative stability of carbocations. J Phys Chem 94:5625–5630. https://doi.org/10.1021/j100377a040

    Article  CAS  Google Scholar 

  18. Hayashi M, Inagusa T (1990) Microwave spectrum, structure and nuclear quadrupole coupling constant tensor of ethyl chloride and vinyl chloride. J Mol Struct 220:103–117. https://doi.org/10.1016/0022-2860(90)80103-Q

    Article  CAS  Google Scholar 

  19. de Medeiros VC, do Monte SA, Ventura E (2014) Valence and rydberg states of CH3Cl: a MR-CISD study. RSC Adv 4:64085–64092. https://doi.org/10.1039/C4RA10567B

    Article  CAS  Google Scholar 

  20. Rodrigues GP, Ventura E, do Monte SA, Barbatti M (2014) Photochemical deactivation process of HCFC-133a (C2H2F3Cl): a nonadiabatic dynamics study. J Phys Chem A 118:12041–12049. https://doi.org/10.1021/jp507681g

    Article  CAS  Google Scholar 

  21. Rodrigues GP, Lucena JR Jr, Ventura E, do Monte AS, Reva I, Fausto R (2013) Matrix isolation infrared spectroscopic and theoretical study of 1,1,1-trifluoro-2-chloroethane (HCFC-133a). J Chem Phys 139:204302–204311. https://doi.org/10.1063/1.4832376

    Article  CAS  PubMed  Google Scholar 

  22. de Medeiros VC, Ventura E, do Monte SA (2012) CASSCF and MR–CISD study of the n − 4 s and n − 4pe Rydberg states of the CF3Cl. Chem Phys Lett 546:30–33. https://doi.org/10.1016/j.cplett.2012.07.037

    Article  CAS  Google Scholar 

  23. Lucena JR Jr, Ventura E, do Monte SA, Araújo RCMU, Ramos MN (2007) Dissociation of ground and nσ* states of CF3Cl using multireference configuration interaction with singles and doubles and with multireference average quadratic coupled cluster extensivity corrections. J Chem Phys 127:164320–164331. https://doi.org/10.1063/1.2800020

    Article  CAS  PubMed  Google Scholar 

  24. Shepard R, Lischka H, Szalay PG, Kovar T, Ernzerhof M (1992) A general multireference configuration-interaction gradient program. J Chem. Phys 96:2085–2098. https://doi.org/10.1063/1.462060

    Article  CAS  Google Scholar 

  25. Shepard R (1995) The analytic gradient method for configuration interaction wave functions. Modern Electron Struct Theory 2:345–458. https://doi.org/10.1142/9789812832108_0007

    Article  CAS  Google Scholar 

  26. Shepard R (1987) Geometrical energy derivative evaluation with MRCI wave functions. Int J Quantum Chem 31:33–34. https://doi.org/10.1002/qua.560310105

    Article  CAS  Google Scholar 

  27. Lischka H, Dallos M, Shepard R (2002) Analytic MRCI gradient for excited states: formalism and application to the n-π*, valence and n-(3 s,3p) Rydberg States of Formaldehyde. Mol Phys 100:1647–1658. https://doi.org/10.1080/00268970210155121

    Article  CAS  Google Scholar 

  28. Shepard R, Shavitt I, Pitzer RM, Comeau DC, Pepper M, Lischka H, Szalay PG, Ahlrichs R, Brown FB, Zhao J (1988) A progress report on the status of the COLUMBUS MRCI program system. Int J Quantum Chem 34:149–165. https://doi.org/10.1002/qua.560340819

    Article  Google Scholar 

  29. Lischka, H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Müller T, Szalay PG, Brown FB, Ahlrichs R, Böhm HJ, et al. (2019) COLUMBUS, an Ab Initio electronic structure program, release 7.0. www.univie.ac.at/columbus. Accessed November 30, 2019

  30. Lischka H, Shepard R, Pitzer RM, Shavitt I, Dallos M, Müller T, Szalay PG, Seth M, Kedziora GS, Yabushita S et al (2001) New high-level multireference methods in the quantum-chemistry program system COLUMBUS: analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI, and parallel CI density. Phys Chem Chem Phys 3:664–673. https://doi.org/10.1039/B008063M

    Article  CAS  Google Scholar 

  31. Lischka H, Shepard R, Brown FB, Shavitt I (1981) New implementation of the graphical unitary-group approach for multi-reference direct configuration-interaction calculations. Int J Quantum Chem 20:91–100. https://doi.org/10.1002/qua.560200810

    Article  Google Scholar 

  32. Helgaker T, Jensen HA, Jørgensen P, Olsen J, Ruud K, Ågren H, Andersen T, Bak KL, Bakken V, Christiansen O, et al. DALTON, an ab initio electronic structure program, Release 1.0. 1997

  33. Langhoff SR, Davidson ER (1974) Configuration interaction calculations on the nitrogen molecule. Int J Quantum Chem 8:61–72. https://doi.org/10.1002/qua.560080106

    Article  CAS  Google Scholar 

  34. Bruna PJ, Peyerimhoff SD, Buenker RJ (1980) The ground state of the CN + ion: a multi-reference CI study. Chem Phys Lett 72:278–284. https://doi.org/10.1016/0009-2614(80)80291-0

    Article  CAS  Google Scholar 

  35. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  36. Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806. https://doi.org/10.1063/1.462569

    Article  CAS  Google Scholar 

  37. Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371. https://doi.org/10.1063/1.464303

    Article  CAS  Google Scholar 

  38. Woon DE, Dunning TH Jr (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties J Chem Phys 100:2975–2988. https://doi.org/10.1063/1.466439

    Article  CAS  Google Scholar 

  39. Hubrich C, Stuhl F (1980) The ultraviolet absorption of some halogenated methanes and ethanes of atmospheric interest J Photochem 12:93–107. https://doi.org/10.1016/0047-2670(80)85031-3

    Article  CAS  Google Scholar 

  40. Jeffrey GA, Saenger W (1991) Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin Heidelberg, p 18

    Book  Google Scholar 

  41. Hobza P, Havlas Z (2000) Blue-Shifting Hydrogen Bonds. Chem Rev 100:4253–4264. https://doi.org/10.1021/cr990050q

    Article  CAS  PubMed  Google Scholar 

  42. Ricks AM, Douberly GE, Schleyer PVR, Duncan MA (2009) Infrared spectroscopy of protonated ethylene: the nature of proton binding in the non-classical structure. Chem Phys Lett 480:17–20. https://doi.org/10.1016/j.cplett.2009.08.063

    Article  CAS  Google Scholar 

  43. Dyke JM, Ellis AR, Keddar N, Morris A (1984) A reinvestigation of the first band in the photoelectron spectrum of the ethyl radical. J Phys Chem 88:2565–2569. https://doi.org/10.1021/j150656a027

    Article  CAS  Google Scholar 

  44. Ruscic B, Berkowitz J, Curtiss LA, Pople JA (1989) The ethyl radical: photoionization and theoretical studies. J Chem Phys 91:114–121. https://doi.org/10.1063/1.457497

    Article  CAS  Google Scholar 

  45. Dixon DA, Feller D, Peterson KA (1997) Accurate calculations of the electron affinity and ionization potential of the methyl radical. J Phys Chem A 101:9405–9409. https://doi.org/10.1021/jp970964l

    Article  CAS  Google Scholar 

  46. Garifullina A, Mahroob A, O’Reilly RJ (2016) A database of hemolytic C-Cl bond dissociation energies obtained by means of W1w theory. Chem Data Collect 3–4:21–25. https://doi.org/10.1016/j.cdc.2016.07.003

    Article  Google Scholar 

  47. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) Addition of polarization and diffuse functions to the LANL2DZ basis set for P-block elements. J Phys Chem A 105:8111–8116. https://doi.org/10.1021/jp011945l

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the following Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Project 303884/2018-5 and 423112/2018-0), Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Financiadora de Estudos e Projetos (FINEP). They are also grateful to the CESUP/UFRGS for the computational facilities and to Prof. Fernando Ornellas from whom many important Quantum Chemistry lessons have been learned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silmar Andrade do Monte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, E., do Monte, S.A. Hydrogen-bonded contact ion pair in gaseous chloroethane: a multi-reference configuration interaction with singles and doubles (MR-CISD) study including extensivity corrections. Theor Chem Acc 139, 49 (2020). https://doi.org/10.1007/s00214-020-2561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2561-8

Keywords

Navigation