Skip to main content
Log in

Excitation energies through Becke’s exciton model within a Cartesian-grid KS DFT

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Photon-induced electronic excitations are ubiquitously observed in organic chromophore. In this context, we present a simple, alternative time-independent DFT procedure, for the computation of single-particle excitation energies, in particular, the lower bound excited singlet states, which are of primary interest in photochemistry. This takes inspiration from recently developed Becke’s exciton model, where a key step constitutes the accurate evaluation of correlated singlet–triplet splitting energy. It introduces a non-empirical model, from both “adiabatic connection theorem” and “virial theorem” to analyze the role of 2e\(^-\) integral in such calculations. The latter quantity is efficiently mapped onto a real grid and computed accurately using a purely numerical strategy. Illustrative calculations are performed on 10 \(\pi \)-electron organic chromophores within a Cartesian grid implementation of pseudopotential Kohn–Sham (KS) DFT, developed in our laboratory, taking SBKJC-type basis functions within B3LYP approximation. The triplet and singlet excitation energies corresponding to first singly excited configuration are found to be in excellent agreement with TD-B3LYP calculations. Further, we perform the same for a set of larger molecular systems using the asymptotically corrected LC-BLYP, in addition to B3LYP. A systematic comparison with theoretical best estimates demonstrates the viability and suitability of current approach in determining optical gaps, combining predictive accuracy with moderate computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  2. Becke AD (2014) J Chem Phys 140:18A301

    Article  PubMed  CAS  Google Scholar 

  3. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  4. Casida ME (1995) In: Chong DP (ed) Recent advances in computational chemistry. World Scientific, Hackensack, pp 155–192

    Google Scholar 

  5. Casida M, Huix-Rotllant M (2012) Annu Rev Phys Chem 63:287

    Article  CAS  PubMed  Google Scholar 

  6. Maitra NT (2016) J Chem Phys 144:220901

    Article  PubMed  CAS  Google Scholar 

  7. Theophilou AK (1979) J Phys C 12:5419

    Article  CAS  Google Scholar 

  8. Gross EKU, Oliveira LN, Kohn W (1988) Phys Rev A 37:2809

    Article  CAS  Google Scholar 

  9. Singh R, Deb BM (1996) J Chem Phys 104:5892

    Article  CAS  Google Scholar 

  10. Roy AK, Singh R, Deb BM (1997) J Phys B 30:4763

    Article  CAS  Google Scholar 

  11. Ayers P, Levy M, Nagy Á (2015) J Chem Phys 143:191101

    Article  CAS  PubMed  Google Scholar 

  12. Ziegler T, Rauk A, Baerends EJ (1977) Theor Chem Acc 43:261

    Article  CAS  Google Scholar 

  13. Kowalczyk T, Yost SR, Voorhis TV (2011) J Chem Phys 134:054128

    Article  PubMed  CAS  Google Scholar 

  14. Seidu I, Krykunov M, Ziegler T (2014a) J Phys Chem A 119:5107

    Article  PubMed  CAS  Google Scholar 

  15. Seidu I, Krykunov M, Ziegler T (2014b) Mol Phys 112:661

    Article  CAS  Google Scholar 

  16. Ziegler T, Krykunov M, Cullen J (2012) J Chem Phys 136:124107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Barca GMJ, Gilbert ATB, Gill PMW (2014) J Chem Phys 141:111104

    Article  PubMed  CAS  Google Scholar 

  18. Ramos P, Pavanello M (2016) Phys Chem Chem Phys 18:21172

    Article  CAS  PubMed  Google Scholar 

  19. Li C, Lu J, Yang W (2015) J Chem Phys 143:224110

    Article  PubMed  CAS  Google Scholar 

  20. Frank I, Hutter J, Marx D, Parrinello M (1998) J Chem Phys 108:4060

    Article  CAS  Google Scholar 

  21. Kowalczyk T, Tsuchimochi T, Chen P-T, Top L, Van Voorhis T (2013) J Chem Phys 138:164101

    Article  PubMed  CAS  Google Scholar 

  22. Shea JA, Neuscamman E (2018) J Chem Phys 149:081101

    Article  PubMed  CAS  Google Scholar 

  23. Hait D, Head-Gordon M (2020) J Chem Theory Comput 16:1699

    Article  CAS  PubMed  Google Scholar 

  24. Carter-Fenk K, Herbert JM (2020) J Chem Theory Comput

  25. Van Meer R, Gritsenko OV, Baerends EJ (2014) J Chem Theory Comput 10:4432

    Article  PubMed  CAS  Google Scholar 

  26. Haiduke RLA, Bartlett RJ (2018) J Chem Phys 149:131101

    Article  PubMed  CAS  Google Scholar 

  27. Manni GL, Carlson RK, Luo S, Ma D, Olsen J, Truhlar DG, Gagliardi L (2014) J Chem Theory Comput 10:3669

    Article  CAS  Google Scholar 

  28. Chen Z, Zhang D, Jin Y, Yang Y, Su NQ, Yang W (2017) J Phys Chem Lett 8:4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Becke AD (2016) J Chem Phys 145:194107

    Article  PubMed  CAS  Google Scholar 

  30. Becke AD (2018a) J Chem Phys 148:044112

    Article  PubMed  CAS  Google Scholar 

  31. Becke AD (2018b) J Chem Phys 149:081102

    Article  PubMed  CAS  Google Scholar 

  32. Becke AD, Dale SG, Johnson ER (2018) J Chem Phys 148:211101

    Article  PubMed  CAS  Google Scholar 

  33. Roy AK (2008) Int J Quantum Chem 108:837

    Article  CAS  Google Scholar 

  34. Roy AK (2008) Chem Phys Lett 461:142

    Article  CAS  Google Scholar 

  35. Roy AK (2009) In: Collett CT, Robson CD (eds) Handbook of computational chemistry research. Nova Publishers, New York

    Google Scholar 

  36. Roy AK (2010) Trends Phys Chem 14:27

    CAS  Google Scholar 

  37. Roy AK (2011) J Math Chem 49:1687

    Article  CAS  Google Scholar 

  38. Ghosal A, Roy AK (2016) In: Springborg M, Joswig JO (eds) Specialist periodical reports: chemical modelling, applications and theory, vol 13. Royal Society of Chemistry, London

    Google Scholar 

  39. Ghosal A, Mandal T, Roy AK (2018) Int J Quantum Chem 118:e25708

    Article  CAS  Google Scholar 

  40. Mandal T, Ghosal A, Roy AK (2019) Theor Chem Acc 138:10

    Article  CAS  Google Scholar 

  41. Ghosal A, Mandal T, Roy AK (2019) J Chem Phys 150:064104

    Article  PubMed  CAS  Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  43. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Hensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ et al (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  44. Baer R, Livshits E, Salzner U (2010) Annu Rev Phys Chem 61:85

    Article  CAS  PubMed  Google Scholar 

  45. Harris J, Jones R (1974) J Phys F 4:1170

    Article  Google Scholar 

  46. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Phys Rev Lett 49:1691

    Article  CAS  Google Scholar 

  47. Silva-Junior MR, Schreiber M, Sauer SP, Thiel W (2010) J Chem Phys 133:174318

    Article  PubMed  CAS  Google Scholar 

  48. Roy AK, Ghosal A, Mandal T InDFT: A DFT program for atoms and molecules in CCG (Theoretical Chemistry Laboratory, IISER Kolkata, India, 2019), This is based on the extension of an initial version of the code, established by A. K. Roy, in 2008, whose results were published in refs. [33–37]

  49. Becke AD, Dickson RM (1988) J Chem Phys 89:2993

    Article  CAS  Google Scholar 

  50. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Chem Phys 98:11623

    Article  CAS  Google Scholar 

  51. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  52. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  53. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  54. Density Functional Repository, Quantum Chemistry Group (2001) CCLRC Daresbury Laboratory, Daresbury, Cheshire, UK

  55. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026

    Article  Google Scholar 

  56. Feller D (1996) J Comp Chem 17:1571

    Article  CAS  Google Scholar 

  57. Frigo M, Johnson SG (2005) Proc IEEE 93:216

    Article  Google Scholar 

  58. Anderson E, Bai Z, Bischof C, Blackford S, Dongarra J, Greenbaum JDCA, Hammarling S, McKenney AA, Sorensen D (1999) LAPACK users’ guide, vol 9. SIAM, Philipedia

    Book  Google Scholar 

  59. Johnson RD III (ed) (2016) NIST computational chemistry comparisons and benchmark Database, NIST Standard Reference Database, Number, Release 18. NIST, Gaithersburg, MD

    Google Scholar 

  60. Silva-Junior MR, Schreiber M, Sauer SP, Thiel W (2010b) J Chem Phys 133:174318

    Article  PubMed  CAS  Google Scholar 

  61. Iikura H, Tsuneda T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  62. Grimme S, Parac M (2003) Chem Phys Chem 4:292

    Article  CAS  PubMed  Google Scholar 

  63. Feng X, Becke AD, Johnson ER (2018) J Chem Phys 149:231101

    Article  PubMed  CAS  Google Scholar 

  64. Gilbert ATB, Besley NA, Gill PMW (2008) J Phys Chem A 112:13164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AG is grateful to UGC for a senior research fellowship. TG acknowledges INSPIRE program for financial support. AKR thankfully acknowledges funding from DST SERB, New Delhi, India (sanction order: CRG/2019/000293). We thank the anonymous refree for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amlan K. Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosal, A., Gupta, T., Mahato, K. et al. Excitation energies through Becke’s exciton model within a Cartesian-grid KS DFT. Theor Chem Acc 140, 2 (2021). https://doi.org/10.1007/s00214-020-02699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02699-5

Keywords

Navigation