Skip to main content
Log in

Understanding the regioselectivity of the copper(I)- and ruthenium(II)- catalyzed [3 + 2] cycloadditions of azido derivative of ribose with terminal alkyne: a theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In the present work, the uncatalyzed, the copper(I)-catalyzed and the ruthenium(II)-catalyzed [3 + 2] cycloadditions (32CA) of azido derivative of ribose with terminal alkyne leading to 1,4- and/or 1,5- 1,2,3-triazole regioisomers have been studied at the B3LYP level of theory in combination with the LanL2DZ basis set for Cu, Ru and Cl atoms and the standard 6-31G(d) basis set for other atoms. The obtained results reveal that the uncatalyzed reaction requires high and similar activation energies, namely 18.29 and 18.80 kcal/mol for the 1,4 and 1,5 regioisomeric pathways, respectively, indicating a very limited regioselectivity in agreement with the experimental outcomes. Interestingly, for the copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC), investigated using the Fokin stepwise mechanism involving two copper atoms, the 1,4 regioisomeric reaction path found to be kinetically more favored than the 1,5 regioisomeric reaction path by 9.13 kcal/mol. By contrast, for the ruthenium(II)-catalyzed azide–alkyne cycloaddition (RuAAC), investigated using the Fokin mechanism using the pentamethylcyclopentadienyl ruthenium chloride [Cp * RuCl] complex, the 1,5 regioisomeric reaction path is more favored than the 1,4 regioisomeric reaction path by 3.48 kcal/mol. The present work puts in evidence the determinant role of Cu/Ru catalysts in the regioselectivity of this click reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huisgen R, Szeimies G, Mobius L (1967) Chem Ber 100:2494–2507

    Article  CAS  Google Scholar 

  2. Huisgen R (1989) Pure Appl Chem 61:613–628

    Article  CAS  Google Scholar 

  3. Rios-Gutierrez M, Domingo LR (2019) Eur J Org Chem 2:267–282

    Article  CAS  Google Scholar 

  4. Tornoe CW, Christensen C, Meldal M (2002) J Org Chem 67:3057–3064

    Article  CAS  PubMed  Google Scholar 

  5. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  6. Ahlquist M, Fokin VV (2007) Organometallics 26:4389–4391

    Article  CAS  Google Scholar 

  7. Jones GO, Houk KN (2008) J Org Chem 73:1333–1342

    Article  CAS  PubMed  Google Scholar 

  8. Ess DH, Houk KN (2008) J Am Chem Soc 130:10187–10198

    Article  CAS  PubMed  Google Scholar 

  9. Jones GO, Houk KN (2008) Org Lett 10:1633–1636

    Article  PubMed  CAS  Google Scholar 

  10. Schoenebeck F, Ess DH, Jones GO, Houk KN (2009) J Am Chem Soc 131:8121–8133

    Article  CAS  PubMed  Google Scholar 

  11. Hamlin TA, Levandowski BJ, Narsaria AK, Houk KN (2019) Chem Eur J 25:6342–6348

    Article  CAS  PubMed  Google Scholar 

  12. Danese M, Bon M, Piccini G, Passerone D (2019) Phys Chem Chem Phys 21:19281–19287

    Article  CAS  PubMed  Google Scholar 

  13. Salah M, Zeroual A, Jorio S, Marakchi K, El Hadki H, Komiha N, Kabbaj OK (2020) J Mol Gr Model 94:107458

    Article  CAS  Google Scholar 

  14. Ghaleb A, Aouidate A, Lakhlifi T, Bouachrine M, Maghat H, Sbai A (2018) Russ J Phys Chem A 92:2464–2471

    Article  Google Scholar 

  15. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) J Am Chem Soc 127:210–216

    Article  CAS  PubMed  Google Scholar 

  16. Ben El Ayouchia H, Bahsis L, Anane H, Domingo LR, Stiriba S (2018) RSC Adv 8:7670–7678

    Article  CAS  Google Scholar 

  17. Rodionov VO, Fokin VV, Finn MG (2005) Angew Chem Int Ed 44:2210–2215

    Article  CAS  Google Scholar 

  18. Hein JE, Fokin VV (2010) Chem Soc Rev 39:1302–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Worrell BT, Malik JA, Fokin VV (2013) Science 340:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV (2008) J Am Chem Soc 130:8923–8930

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G (2005) J Am Chem Soc 127:15998–15999

    Article  CAS  PubMed  Google Scholar 

  22. Hou DR, Kuan TC, Li YK, Lee R, Huang KW (2010) Tetrahedron 66:9415–9420

    Article  CAS  Google Scholar 

  23. Lamberti M, Fortman GC, Poaterm A, Broggim J, Slawin AMZ, Cavallo L, Nolan SP (2012) Organometallics 31:756–767

    Article  CAS  Google Scholar 

  24. Boz E, Tuzun NS (2013) J Organomet Chem 724:167–176

    Article  CAS  Google Scholar 

  25. Calvo-Losada S, Pino MS, Quirante JJ (2014) J Mol Model 20:2187

    Article  PubMed  CAS  Google Scholar 

  26. Calvo-Losada S, Pino-Gonzalez MS, Quirante JJ (2015) J Phys Chem 119:1243–1258

    Article  CAS  Google Scholar 

  27. Kann N, Johansson JR, Beke-Somfai T (2015) Org Biomol Chem 13:2776–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calvo-Losada S, Quirante JJ (2017) J Mol Model 23:337

    Article  CAS  PubMed  Google Scholar 

  29. Bahsis L, Ben El Ayouchia H, Anane H, Pascual-Alvarez A, De Munno G, Julve M, Stiriba SE (2019) Appl Organometal Chem 33:4669

    Article  CAS  Google Scholar 

  30. Johansson JR, Hermansson E, Norden B, Kann N, Beke-Somfai T (2014) Eur J Org Chem 13:2703–2713

    Article  CAS  Google Scholar 

  31. Stalsmeden AS, Paterson AJ, Szigyarto IC, Thunberg L, Johansson JR, Beke-Somfai T, Kann N (2020) Org Biomol Chem 18:1957–1967

    Article  Google Scholar 

  32. Hosseinnejad T, Fattahi B, Heravi MM (2015) J Mol Model 21:264

    Article  PubMed  CAS  Google Scholar 

  33. Wang C, Ikhlef D, Kahlal S, Saillard JY, Astruc D (2016) Coord Chem Rev 316:1–20

    Article  CAS  Google Scholar 

  34. Micheel F, Baum O (1957) Chem Ber 90:1595–1596

    Article  CAS  Google Scholar 

  35. Kolb HC, Sharpless KB (2003) Drug Discov Today 8:1128–1137

    Article  CAS  PubMed  Google Scholar 

  36. Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA (2008) Med Res Rev 28:278–308

    Article  CAS  PubMed  Google Scholar 

  37. Amblard F, Cho JH, Schinazi RF (2009) Chem Rev 109:4207–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kushwaha D, Dwivedi P, Kuanar SK, Tiwari VK (2013) Curr Org Syn 10:90–135

    Article  CAS  Google Scholar 

  39. Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X (2016) Chem Rev 116:3086–3240

    Article  CAS  PubMed  Google Scholar 

  40. He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR (2016) Carbohydr Res 429:1–22

    Article  CAS  PubMed  Google Scholar 

  41. Dwek RA (1996) Chem Rev 96:683–720

    Article  CAS  PubMed  Google Scholar 

  42. Johansson JR, Beke-Somfai T, Stalsmeden AS, Kann N (2016) Chem Rev 116:14726–14768

    Article  CAS  PubMed  Google Scholar 

  43. Bertho A (1930) Ber Dtsch Chem Ges 63:836–843

    Article  Google Scholar 

  44. Beckmann HSG, Wittmann V (2010) Azides in carbohydrate chemistry. In: Brase S, Banert K (eds) Organic azides: syntheses and applications. Wiley, Chichester, pp 469–490

    Google Scholar 

  45. Ferreira SB, Sodero ACR, Cardoso MFC, Lima ES, Kaiser CR, Silva FP Jr, Ferreira VF (2010) J Med Chem 53:2364–2375

    Article  CAS  PubMed  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2015) Gaussian 09 Revision E.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  47. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  48. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  49. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  50. Hartwig JF, Cook KS, Hapke M, Incarvito CD, Fan YB, Webster CE, Hall MB (2005) J Am Chem Soc 127:2538–2552

    Article  CAS  PubMed  Google Scholar 

  51. Ben El Ayouchia H, Bahsis L, Fichtali I, Domingo LR, Ríos-Gutiérrez M, Julve M, Stiriba SE (2020) Catalysts 10:956

    Article  CAS  Google Scholar 

  52. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  53. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  54. Gonzalez C, Schlegel HB (1991) J Chem Phys 95:5853

    Article  CAS  Google Scholar 

  55. Domingo LR (2014) RSC Adv 4:32415–32428

    Article  CAS  Google Scholar 

  56. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  57. Cantillo D, Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (2011) Org Biomol Chem 9:2952–2958

    Article  CAS  PubMed  Google Scholar 

  58. Straub BF (2007) Chem Commun 37:3868–3870

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education and Scientific Research under the PRFU project (approval No. B00L01UN130120180001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafaa Benchouk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousfi, Y., Benchouk, W. & Mekelleche, S.M. Understanding the regioselectivity of the copper(I)- and ruthenium(II)- catalyzed [3 + 2] cycloadditions of azido derivative of ribose with terminal alkyne: a theoretical study. Theor Chem Acc 140, 4 (2021). https://doi.org/10.1007/s00214-020-02693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02693-x

Keywords

Navigation