Skip to main content
Log in

CH4–N2, NH3–N2, H2O–N2 and HF–N2 complexes: Ab initio studies and comparisons—transition to hydrogen bonding

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Geometry optimizations on a set of structures for the CH4–N2, NH3–N2, H2O–N2 and HF–N2 complexes were performed using coupled cluster CCSD(T) methods with augmented correlation consistent basis sets up to the five-zeta level (AV5Z). Corrections for the basis set superposition error were applied. Most stable for CH4–N2 is a structure with N2 facing three hydrogens of CH4 in T-shape. For NH3–N2, two structures were found to have equal dissociation energies, one with N2 facing N of NH3, corresponding to the structure predicted and confirmed by microwave spectroscopy, the other being hydrogen-bonded. For H2O–N2 and HF–N2, the hydrogen-bonded structure (X–H···N) is most stable. Dissociation energies De increase from 159 cm−1 to 246 cm−1 to 428 cm−1 to 800 cm−1 along this series. For the hydrogen-bonded structures, the X–N and X–H distances decrease along the series. Both X–H–N and H–N–N angles are around 145° (most bent) for NH3–N2, around 170° (near linear) for H2O–N2 and 180° (linear) for HF–N2. Upon complexation, dipole and quadrupole moments generally increase. Harmonic vibrational frequencies and IR intensities were calculated by the Møller–Plesset MP2/AVQZ method. Frequencies of the intermolecular vibrational modes increase from CH4–N2 to HF–N2. Infrared intensities of the highest frequency intermolecular modes increase from 0.004 km/mol for CH4–N2 to 120 km/mol for HF–N2. Intensities of the stretching modes increase well over the monomer values in going across this series of complexes, particularly for H2O–N2 and HF–N2. Calculated redshifts of the stretching modes are 83 cm−1 for HF–N2 (43 cm−1 experimentally). Results are compared with those of corresponding XHn–O2 complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grein F (2020) CH4–O2, NH3–O2, H2O–O2 and HF–O2 triplet complexes. Ab initio studies and comparisons. From van der Waals to hydrogen bonding. Comput Theor Chem 1182:112834. https://doi.org/10.1016/j.comptc.2020.112834

    Article  CAS  Google Scholar 

  2. Reid Thompson W, Zollweg JA, Gabis DH (1992) Vapor-liquid equilibrium thermodynamics of N2 + CH4: model and Titan applications. Icarus 97(2):187–199. https://doi.org/10.1016/0019-1035(92)90127-S

    Article  Google Scholar 

  3. Fraser GT, Nelson DD, Charo A, Klemperer W (1985) Microwave and infrared characterization of several weakly bound NH3 complexes. J Chem Phys 82(6):2535–2546. https://doi.org/10.1063/1.448303

    Article  CAS  Google Scholar 

  4. Fraser GT, Nelson DD, Peterson KI, Klemperer W (1986) The rotational spectra of NH 3 –CO and NH3 –N2. J Chem Phys 84:2472–2480. https://doi.org/10.1063/1.450366

    Article  CAS  Google Scholar 

  5. Walker KA, McKellar ARW (2001) Millimetre wave spectrum of the weakly bound complex NH3–N2. Mol Phys 99(16):1391–1396. https://doi.org/10.1080/00268970110061801

    Article  CAS  Google Scholar 

  6. Surin L, Tarabukin I, Pérez C, Schnell M (2018) Microwave spectra and nuclear quadrupole structure of the NH3–N2 van der Waals complex and its deuterated isotopologues. J Chem Phys 149:224305. https://doi.org/10.1063/1.5063346

    Article  CAS  PubMed  Google Scholar 

  7. Surin LA, Kalugina YN et al (2020) Ab initio potential energy surface and microwave spectrum of the NH3–N2 van der Waals complex. J Chem Phys 152:234304. https://doi.org/10.1063/5.0011557

    Article  CAS  PubMed  Google Scholar 

  8. Vaida V, Kjaergaard HG, Feierabend KJ (2003) Hydrated complexes: relevance to atmospheric chemistry and climate. Int Rev Phys Chem 22(1):203–219. https://doi.org/10.1080/0144235031000075780

    Article  CAS  Google Scholar 

  9. Kjaergaard HG, Robinson TW, Howard DL, Daniel JS, Headrick JE, Vaida V (2003) Complexes of importance of the absorption of solar radiation. J Phys Chem A 107(49):10680–10686. https://doi.org/10.1021/jp035098t

    Article  CAS  Google Scholar 

  10. Benedict WS, Gailar N, Plyler EK (1956) Rotation-vibration spectra of deuterated water vapor. J Chem Phys 24(6):1139–1165. https://doi.org/10.1063/1.1742731

    Article  CAS  Google Scholar 

  11. Coussan S, Loutellier A, Perchard JP, Racine S, Bouteiller Y (1998) Matrix isolation infrared spectroscopy and DFT calculations of complexes between water and nitrogen. J Mol Struct 471(1–3):37–47. https://doi.org/10.1016/S0022-2860(98)00386-X

    Article  CAS  Google Scholar 

  12. Kuma S, Slipchenko MN, Kuyanov KE, Momose T, Vilesov AF (2006) Infrared spectra and intensities of the H2O and N2 complexes in the range of the ν1- and ν3-bands of water. J Phys Chem A 110(33):10046–10052. https://doi.org/10.1021/jp0624754

    Article  CAS  PubMed  Google Scholar 

  13. Leung HO, Marshall MD, Suenram RD, Lovas FJ (1988) Microwave spectrum and molecular structure of the N2–H2O complex. J Chem Phys 90(2):700–712

    Article  Google Scholar 

  14. Soper PD, Legon AC, Read WG, Flygare WH (1982) The microwave rotational spectrum, molecular geometry, 14 N nuclear quadrupole coupling constants, and H, 19F nuclear spin-nuclear spin coupling constant of the nitrogen-hydrogen fluoride dimer. J Chem Phys 76(1):292–300. https://doi.org/10.1063/1.442778

    Article  CAS  Google Scholar 

  15. Kolenbrander KD, Lisy JM (1986) Vibrational predissociation spectroscopy of binary HF-base complexes. J Chem Phys 85(5):2463–2471. https://doi.org/10.1063/1.451055

    Article  CAS  Google Scholar 

  16. Jucks KW, Huang ZS, Miller RE (1987) The nitrogen—hydrogen fluoride dimer: infrared spectroscopy and vibrational predissociation. J Chem Phys 86:1098–1103

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16, Revision A.03. Gaussian Inc, Wallingford

    Google Scholar 

  18. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies: some procedures with reduced errors. Mol Phys 19(4):553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  19. Kalugina YN, Cherepanov VN, Buldakov MA, Zvereva-Lote N, Boudon V (2009) Theoretical investigation of the potential energy surface of the van der Waals complex CH4–N2. J Chem Phys 131(13):1. https://doi.org/10.1063/1.3242080

    Article  CAS  Google Scholar 

  20. Kalugina YN, Buldakov MA, Cherepanov VN (2012) Static hyperpolarizability of the van der Waals complex CH 4-N2. J Comput Chem 33:2544–2553. https://doi.org/10.1002/jcc.23093

    Article  CAS  PubMed  Google Scholar 

  21. Zvereva-Lote N, Kalugina YN, Boudon V, Buldakov MA, Cherepanov VN (2010) Dipole moment surface of the van der Waals complex CH4–N2. J Chem Phys 133:184302. https://doi.org/10.1063/1.3494539

    Article  CAS  Google Scholar 

  22. Shadman M, Yeganegi S, Ziaie F (2009) Ab initio interaction potential of methane and nitrogen. Chem Phys Lett 467(4–6):237–242. https://doi.org/10.1016/j.cplett.2008.11.045

    Article  CAS  Google Scholar 

  23. Surin LA, Potapov A, Dolgov AA et al (2015) Rotational study of the NH3–CO complex: millimeter-wave measurements and ab initio calculations. J Chem Phys 142:114308. https://doi.org/10.1063/1.4915119

    Article  CAS  PubMed  Google Scholar 

  24. Ellington TL, Tschumper GS (2013) Anchoring the potential energy surface of the nitrogen/water dimer, N2···H2O, with explicitly correlated coupled-cluster computations. Comput Theor Chem 1021:109–113. https://doi.org/10.1016/j.comptc.2013.06.035

    Article  CAS  Google Scholar 

  25. Svishchev IM, Boyd RJ (1998) Van der Waals complexes of water with oxygen and nitrogen: infrared spectra and atmospheric implications. J Phys Chem A 102(37):7294–7296. https://doi.org/10.1021/jp981166d

    Article  CAS  Google Scholar 

  26. Sadlej J, Rowland B, Devlin JP, Buch V (1995) Vibrational spectra of water complexes with H2, N2, and CO. J Chem Phys 102:4804–4818

    Article  CAS  Google Scholar 

  27. Woon DE, Dunning TH, Peterson KA (1996) Ab initio investigation of the N2-HF complex: accurate structure and energetics. J Chem Phys 104(15):5883–5891. https://doi.org/10.1063/1.471320

    Article  CAS  Google Scholar 

  28. Jankowski P, Tsang SN, Klemperer W, Szalewicz K (2001) Spectra of N2-HF from symmetry-adapted perturbation theory potential. J Chem Phys 114(20):8948–8963. https://doi.org/10.1063/1.1362326

    Article  CAS  Google Scholar 

  29. Kjaergaard HG, Low GR, Robinson TW, Howard DL (2002) Calculated OH-stretching vibrational transitions in the water-nitrogen and water–Oxygen complexes. J Phys Chem A 106(38):8955–8962. https://doi.org/10.1021/jp020542y

    Article  CAS  Google Scholar 

  30. Lovejoy CM, Nesbitt DJ (1987) High sensitivity, high-resolution IR laser spectroscopy in slit supersonic jets: application to N2HF ν1 and ν5 + ν1–ν5. J Chem Phys 86(6):3151–3165. https://doi.org/10.1063/1.452026

    Article  CAS  Google Scholar 

  31. Tsang SN, Chuang C, Mollaaghababa R, Klemperer W, Chang H (1996) Intermolecular state dependence of the vibrational predissociation of N2 HF. J Chem Phys 105(10):4385–4387. https://doi.org/10.1063/1.472255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Longtime financial support by NSERC of Canada is gratefully acknowledged. Computing time supplied by Compute Canada is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Grein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grein, F. CH4–N2, NH3–N2, H2O–N2 and HF–N2 complexes: Ab initio studies and comparisons—transition to hydrogen bonding. Theor Chem Acc 139, 166 (2020). https://doi.org/10.1007/s00214-020-02678-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02678-w

Keywords

Navigation