Skip to main content
Log in

Application of coverage-dependent micro-kinetic study to investigate direct H2O2 synthesis mechanism on Pd(111) surface

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) is a highly effective, green oxidant that has been widely used in many chemical industries. Two coverage-dependent models are built in micro-kinetic study and successfully applied to investigate the direct H2O2 synthesis mechanism from hydrogen and oxygen on Pd(111) surface. The computational results from both models show that the selectivity to H2O2 can reach 99%, which takes advantage of the repulsion effects between the adsorbates and O* on the surface. H2O2 comes from the sequential hydrogenation of O2 and H2O as the by-product is dominantly from H2O2* decomposition. Therefore, how to inhibit H2O2* decomposition is the key step to achieve high selectivity on Pd(111) surface. Both models show H2O generation with higher apparent activation energy compared to H2O2 formation, indicating that low temperature will benefit selectivity to H2O2. The calculated apparent activation energies are 22.30 kJ mol−1 for H2O2 formation and 48.67 kJ mol−1 for H2O generation by the standard method, which agrees well with the experimental observations. It indicates that the coverage-dependent micro-kinetic study is a feasible method to investigate reaction mechanisms on various surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lewis RJ, Hutchings GJ (2019) ChemCatChem 11(1):298

    Article  CAS  Google Scholar 

  2. Biasi P, Serna JG, Salmi TO, Mikkola JP (2013) Chem Eng Trans 32:673

    Google Scholar 

  3. Ranganathan S, Sieber V (2018) Catalysts 8(9):379

    Article  Google Scholar 

  4. Staykov A, Kamachi T, Ishihara T, Yoshizawa K (2008) J Phys Chem C 112(49):19501

    Article  CAS  Google Scholar 

  5. Tian PF, Ouyang LK, Xu XC, Xu J, Han YF (2013) Chin J Catal 34(5):1002

    Article  CAS  Google Scholar 

  6. Deguchi T, Iwamoto M (2013) J Phys Chem C 117(36):18540

    Article  CAS  Google Scholar 

  7. Tian PF, Ding DD, Sun Y, Xuan FZ, Xu XY, Xu J, Han YF (2019) J Catal 369:95

    Article  CAS  Google Scholar 

  8. Song X, Sun KJ, Hao XF, Su HY, Ma XF, Xu YH (2019) J Phys Chem C 123(43):26324

    Article  CAS  Google Scholar 

  9. Jorgensen M, Gronbeck H (2016) ACS Catal 6(10):6730

    Article  Google Scholar 

  10. Guo W, Vlachos DG (2013) J Chem Phys 138(17):174702

    Article  Google Scholar 

  11. Getman RB, Schneider WF (2010) ChemCatChem 2(11):1450

    Article  CAS  Google Scholar 

  12. Wang YG, Cantu DC, Lee MS, Li J, Glezakou VA, Rousseau R (2016) J Am Chem Soc 138(33):10467

    Article  CAS  Google Scholar 

  13. Sabbe MK, Canduela-Rodriguez G, Joly JF, Reyniers MF, Marin GB (2017) Catal Sci Technol 7(22):5267

    Article  CAS  Google Scholar 

  14. Bajpai A, Frey K, Schneider WF (2020) Langmuir 36(1):465

    Article  CAS  Google Scholar 

  15. Grabow LC, Hvolbaek B, Norskov JK (2010) Top Catal 53(5–6):298

    Article  CAS  Google Scholar 

  16. Kresse G, Hafner J (1993) Phys Rev B Condens Matter 48(17):13115

    Article  CAS  Google Scholar 

  17. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  18. Blochi PE (1994) Phys Rev B Condens Matter 50(24):17953

    Article  Google Scholar 

  19. Kresse G, Joubert D (1999) Phys Rev B 59(3):1758

    Article  CAS  Google Scholar 

  20. Li J, Ishihara T, Yoshizawa K (2011) J Phys Chem C 115(51):25359

    Article  CAS  Google Scholar 

  21. Eichler A, Mittendorfer F, Hafner J (2000) Phys Rev B 62(7):4744

    Article  CAS  Google Scholar 

  22. Sun K, Zhao Y, Su HY, Li WX (2012) Theor Chem Acc 131(2):1118

    Article  Google Scholar 

  23. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108(46):17886

    Article  CAS  Google Scholar 

  24. Coenen K, Gallucci F, Hensen E, Annaland MV (2019) Chem Eng J 355:520

    Article  CAS  Google Scholar 

  25. Chen L, Smith RS, Kay BD, Dohnalek Z (2016) Surf Sci 650:83

    Article  CAS  Google Scholar 

  26. Sun KJ, Su HY, Li WX (2018) Theor Chem Acc 137(10):128

    Article  Google Scholar 

  27. Evans AG, Polanyi M (1938) Trans Faraday Soc 34:11

    Article  CAS  Google Scholar 

  28. Prestianni A, Ferrante F, Duca D (2017) Theor Chem Acc 136(1):6

    Article  Google Scholar 

  29. Fantauzzi D, Zhu TW, Mueller JE, Filot IAW, Hensen EJM, Jacob T (2015) Catal Lett 145(1):451

    Article  CAS  Google Scholar 

  30. Cvetanović RJ, Amenomiya Y (1967) Application of a temperature-programmed desorption technique to catalyst studies. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 17. Academic Press, Cambridge, p 103

    Google Scholar 

  31. Carsten S, Anders A, Campbell CT (2009) J Am Chem Soc 131(23):8077

    Article  Google Scholar 

  32. Manatt SL, Manatt MRR (2004) Chem Eur J 10(24):6540

    Article  CAS  Google Scholar 

  33. Abate S, Centi G, Perathoner S, Melada S, Pinna F, Strukul G (2006) Top Catal 38(1–3):181

    Article  CAS  Google Scholar 

  34. Voloshin Y, Halder R, Lawal A (2007) Catal Today 125(1–2):40

    Article  CAS  Google Scholar 

  35. Gemo N, Biasi P, Canu P, Salmi TO (2012) Chem Eng J 207:539

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for financial supports from the Natural Science Foundation of Hebei Province (No. B2017203113, B2016203158) and the National Natural Science Foundation of China (No. 21872136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keju Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Song, X., Hao, X. et al. Application of coverage-dependent micro-kinetic study to investigate direct H2O2 synthesis mechanism on Pd(111) surface. Theor Chem Acc 139, 170 (2020). https://doi.org/10.1007/s00214-020-02676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02676-y

Keywords

Navigation