Skip to main content
Log in

Three-center two-electron bonds in the boranes B2H6 and B3H8 from the quantum interference perspective

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work the nature of the three-center two-electron (3c2e) chemical bonds in the diborane (6) molecule and the octahydrotriborate anion (B3H8) is investigated by the Generalized Product Function Energy Partitioning (GPF-EP) method using modern valence bond wave functions. The Interference Energy Analysis shows that 3c2e bonds have the same features of a 2c2e bond: interference dominates the energetic balance for the formation of the bond and the kinetic energy drop is responsible for its stabilization. Also, 3c2e are generally way more energetic than a 2c2e analogous one, because interference can occur in three different ways (multiple interference effect), rather than just in one as for the two-center bonds. Furthermore, with the GPF-EP method one could establish a more rigorous way for discussing the idea of a “supported” bond in the diborane (6) molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ruedenberg K (1962) The physical nature of the chemical bond. Rev Mod Phys 34:326–376. https://doi.org/10.1103/RevModPhys.34.326

    Article  CAS  Google Scholar 

  2. Cardozo TM, Nascimento MAC (2009) Energy partitioning for generalized product functions: the interference contribution to the energy of generalized valence bond and spin coupled wave functions. J Chem Phys 130:104102. https://doi.org/10.1063/1.3085953

    Article  CAS  PubMed  Google Scholar 

  3. Fantuzzi F, de Sousa DWO, Nascimento MAC (2017) The nature of the chemical bond from a quantum mechanical interference perspective. ChemistrySelect 2:604–619. https://doi.org/10.1002/slct.201601535

    Article  CAS  Google Scholar 

  4. de Sousa DWO, Nascimento MAC (2017) Are one-electron bonds any different from standard two-electron covalent bonds? Acc Chem Res 50:2264–2272. https://doi.org/10.1021/acs.accounts.7b00260

    Article  CAS  PubMed  Google Scholar 

  5. Cardozo TM, Nascimento MAC (2009) Chemical bonding in the N2 molecule and the role of the quantum mechanical interference effect. J Phys Chem A 113:12541–12548. https://doi.org/10.1021/jp903963h

    Article  CAS  PubMed  Google Scholar 

  6. Cardozo TM, Nascimento Freitas G, Nascimento MAC (2010) Interference effect and the nature of the π-bonding in 1,3-butadiene. J Phys Chem A 114:8798–8805. https://doi.org/10.1021/jp101785p

    Article  CAS  PubMed  Google Scholar 

  7. Fantuzzi F, Cardozo TM, Nascimento MAC (2012) The role of quantum-mechanical interference and quasi-classical effects in conjugated hydrocarbons. Phys Chem Chem Phys 14:5479–5488. https://doi.org/10.1039/c2cp24125k

    Article  CAS  PubMed  Google Scholar 

  8. Vieira FS, Fantuzzi F, Cardozo TM, Nascimento MAC (2013) Interference energy in C–H and C–C bonds of saturated hydrocarbons: dependence on the type of chain and relationship to bond dissociation energy. J Phys Chem A 117:4025–4034. https://doi.org/10.1021/jp4005746

    Article  CAS  PubMed  Google Scholar 

  9. Cardozo TM, Fantuzzi F, Nascimento MAC (2014) The non-covalent nature of the molecular structure of the benzene molecule. Phys Chem Chem Phys 16:11024. https://doi.org/10.1039/c3cp55256j

    Article  CAS  PubMed  Google Scholar 

  10. Fantuzzi F, Nascimento MAC (2014) Description of polar chemical bonds from the quantum mechanical interference perspective. J Chem Theory Comput 10:2322–2332. https://doi.org/10.1021/ct500334f

    Article  CAS  PubMed  Google Scholar 

  11. Fantuzzi F, Cardozo TM, Nascimento MAC (2015) Nature of the chemical bond and origin of the inverted dipole moment in boron fluoride: a generalized valence bond approach. J Phys Chem A 119:5335–5343. https://doi.org/10.1021/jp510085r

    Article  CAS  PubMed  Google Scholar 

  12. de Sousa DWO, Nascimento MAC (2016) Is there a quadruple bond in C2? J Chem Theory Comput 12:2234–2241. https://doi.org/10.1021/acs.jctc.6b00055

    Article  CAS  PubMed  Google Scholar 

  13. Fantuzzi F, Cardozo TM, Nascimento MAC (2016) The nature of the singlet and triplet states of cyclobutadiene as revealed by quantum interference. ChemPhysChem 17:288–295. https://doi.org/10.1002/cphc.201500885

    Article  CAS  PubMed  Google Scholar 

  14. Fantuzzi F, Cardozo TM, Nascimento MAC (2017) On the metastability of doubly charged homonuclear diatomics. Phys Chem Chem Phys 19:19352–19359. https://doi.org/10.1039/C7CP02792C

    Article  CAS  PubMed  Google Scholar 

  15. Fantuzzi F, de Sousa DWO, Chaer Nascimento MA (2017) Chemical bonding in the pentagonal-pyramidal benzene dication and analogous isoelectronic hexa-coordinate species. Comput Theor Chem 1116:225–233. https://doi.org/10.1016/j.comptc.2017.03.020

    Article  CAS  Google Scholar 

  16. de Sousa DWO, Nascimento MAC (2018) Quantum interference contribution to the dipole moment of diatomic molecules. J Phys Chem A 122:1406–1412. https://doi.org/10.1021/acs.jpca.7b11760

    Article  CAS  Google Scholar 

  17. de Sousa DWO, Nascimento MAC (2019) One-electron bonds are not “half-bonds”. Phys Chem Chem Phys 21:13319–13336. https://doi.org/10.1039/C9CP02209K

    Article  PubMed  Google Scholar 

  18. Fantuzzi F, Wolff W, Quitián-Lara HM et al (2019) Unexpected reversal of stability in strained systems containing one-electron bonds. Phys Chem Chem Phys 21:24984–24992. https://doi.org/10.1039/C9CP04964A

    Article  CAS  PubMed  Google Scholar 

  19. Green JC, Green MLH, Parkin G (2012) The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. Chem Commun 48:11481–11503. https://doi.org/10.1039/c2cc35304k

    Article  CAS  Google Scholar 

  20. McMurry JE, Lectka T (1992) Three-center, two-electron C–H–C bonds in organic chemistry. Acc Chem Res 25:47–53. https://doi.org/10.1021/ar00013a007

    Article  CAS  Google Scholar 

  21. Laszlo P (2000) A diborane story. Angew Chem Int Ed 39:2071–2072. https://doi.org/10.1002/1521-3773(20000616)39:12%3c2071:AID-ANIE2071%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  22. Longuet-Higgins HC, Bell RP (1943) The structure of the boron hydrides. J Chem Soc. https://doi.org/10.1039/jr9430000250

    Article  Google Scholar 

  23. Pitzer KS (1945) Electron deficient molecules. I. The principles of hydroboron structures. J Am Chem Soc 67:1126–1132. https://doi.org/10.1021/ja01223a026

    Article  CAS  Google Scholar 

  24. Longuet-Higgins HG (1949) Substances hydrogénées avec défautd’électrons. J Chim Phys 46:268–275. https://doi.org/10.1051/jcp/1949460268

    Article  CAS  Google Scholar 

  25. Hamilton WC (1956) A molecular orbital treatment of diborane as a four-centre, four-electron problem. Proc R Soc Lond Ser A Math Phys Sci 235:395–407. https://doi.org/10.1098/rspa.1956.0092

    Article  CAS  Google Scholar 

  26. Mulliken RS (1947) The structure of diborane and related molecules. Chem Rev 41:207–217. https://doi.org/10.1021/cr60129a002

    Article  CAS  PubMed  Google Scholar 

  27. Rundle RE (1947) Electron deficient compounds. III. The bridge structure for B2H6. J Am Chem Soc 69:2075–2076. https://doi.org/10.1021/ja01200a522

    Article  CAS  Google Scholar 

  28. Rundle RE (1949) Electron deficient compounds. II. Relative energies of ``half-bonds’’. J Chem Phys 17:671–675. https://doi.org/10.1063/1.1747367

    Article  CAS  Google Scholar 

  29. Lipscomb WN (1954) Structures of the boron hydrides. J Chem Phys 22:985–988. https://doi.org/10.1063/1.1740319

    Article  CAS  Google Scholar 

  30. Eberhardt WH, Crawford B, Lipscomb WN (1954) The valence structure of the boron hydrides. J Chem Phys 22:989–1001. https://doi.org/10.1063/1.1740320

    Article  CAS  Google Scholar 

  31. Lipscomb WN (1977) The boranes and their relatives. Science (80-) 196:1047–1055. https://doi.org/10.1126/science.196.4294.1047

    Article  CAS  Google Scholar 

  32. Mingos DMP (1972) A general theory for cluster and ring compounds of the main group and transition elements. Nat Phys Sci 236:99–102. https://doi.org/10.1038/physci236099a0

    Article  CAS  Google Scholar 

  33. Hough WV, Edwards LJ, McElroy AD (1956) The sodium-diborane reaction. J Am Chem Soc 78:689–689. https://doi.org/10.1021/ja01584a047

    Article  CAS  Google Scholar 

  34. Kodama G, Parry RW, Carter JC (1959) The preparation and properties of ammonia-triborane, H3NB3H7. J Am Chem Soc 81:3534–3538. https://doi.org/10.1021/ja01523a012

    Article  CAS  Google Scholar 

  35. Peters CR, Nordman CE (1960) The structure of the B3H8 ion. J Am Chem Soc 82:5758. https://doi.org/10.1021/ja01506a053

    Article  CAS  Google Scholar 

  36. Phillips WD, Miller HC, Muetterties EL (1959) B11 magnetic resonance study of boron compounds. J Am Chem Soc 81:4496–4500. https://doi.org/10.1021/ja01526a014

    Article  CAS  Google Scholar 

  37. Lipscomb WN (1959) Structure and reactions of the boron hydrides. J Inorg Nucl Chem 11:1–8. https://doi.org/10.1016/0022-1902(59)80207-4

    Article  CAS  Google Scholar 

  38. Pepperberg IM, Dixon DA, Lipscomb WN, Halgren TA (1978) The question of fluxional behavior in octahydrotriborate(1-) and pentaborane(11). Inorg Chem 17:587–593. https://doi.org/10.1021/ic50181a014

    Article  CAS  Google Scholar 

  39. McKee ML, Lipscomb WN (1982) Ab initio study of the transient boron hydrides B3H7, B3H9, B4H8, and B4H12 and the fluxional anion B3H8. Inorg Chem 21:2846–2850. https://doi.org/10.1021/ic00137a060

    Article  CAS  Google Scholar 

  40. Duncan JL, Harper J (1984) The structure of the diborane molecule. Mol Phys 51:371–380. https://doi.org/10.1080/00268978400100251

    Article  CAS  Google Scholar 

  41. Huang Z, King G, Chen X et al (2010) A simple and efficient way to synthesize unsolvated sodium octahydrotriborate. Inorg Chem 49:8185–8187. https://doi.org/10.1021/ic101543v

    Article  CAS  PubMed  Google Scholar 

  42. Dunbar AC, Macor JA, Girolami GS (2014) Synthesis and single crystal structure of sodium octahydrotriborate, NaB3H8. Inorg Chem 53:822–826. https://doi.org/10.1021/ic402127x

    Article  CAS  PubMed  Google Scholar 

  43. Longuet-Higgins HC (1957) The structures of electron-deficient molecules. Q Rev Chem Soc 11:121. https://doi.org/10.1039/qr9571100121

    Article  CAS  Google Scholar 

  44. Hoffmann R, Lipscomb WN (1962) Boron hydrides: LCAO—MO and resonance studies. J Chem Phys 37:2872–2883. https://doi.org/10.1063/1.1733113

    Article  CAS  Google Scholar 

  45. Duke BJ, Linnett JW (1966) Electronic structure of diborane and the diborohydride ion. Trans Faraday Soc 62:2955. https://doi.org/10.1039/tf9666202955

    Article  CAS  Google Scholar 

  46. Gerratt J, Cooper DL, Karadakov PB, Raimondi M (1997) Modern valence bond theory. Chem Soc Rev 26:87. https://doi.org/10.1039/cs9972600087

    Article  CAS  Google Scholar 

  47. Nascimento MAC, Barbosa AGH (2003) Quantum mechanics of many-electrons systems and the theories of chemical bond. In: Brändas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry: a tribute to the memory of per-OlovLöwdin. Springer, Dordrecht, pp 371–406

    Chapter  Google Scholar 

  48. Goddard WA (1967) Improved quantum theory of many-electron systems. I. Construction of eigenfunctions of S2 which satisfy Pauli’s principle. Phys Rev 157:73–80. https://doi.org/10.1103/PhysRev.157.73

    Article  CAS  Google Scholar 

  49. Gerratt J, Lipscomb WN (1968) Spin-coupled wave functions for atoms and molecules. Proc Natl Acad Sci 59:332–335. https://doi.org/10.1073/pnas.59.2.332

    Article  CAS  PubMed  Google Scholar 

  50. Nascimento MAC (2019) The consequences of neglecting permutation symmetry in the description of many-electrons systems. Int J Quantum Chem 119:e25765. https://doi.org/10.1002/qua.25765

    Article  CAS  Google Scholar 

  51. Wilson S, Gerratt J (1975) The electronic structure of the diborane molecule a self-consistent group function model. Mol Phys 30:765–775. https://doi.org/10.1080/00268977500102321

    Article  CAS  Google Scholar 

  52. McWeeny R (1959) The density matrix in many-electron quantum mechanics. I. Generalized product functions. factorization and physical interpretation of the density matrices. Proc R Soc A Math Phys Eng Sci 253:242–259. https://doi.org/10.1098/rspa.1959.0191

    Article  CAS  Google Scholar 

  53. Sironi M, Raimondi M, Cooper DL, Gerratt J (1991) Electronic structure of diborane and octahydrotriborate(1-): boron-hydrogen-boron bridges and closed boron-boron-boron bonds. J Phys Chem 95:10617–10623. https://doi.org/10.1021/j100179a024

    Article  CAS  Google Scholar 

  54. DeKock RL, Bosma WB (1988) The three-center, two-electron chemical bond. J Chem Educ 65:194–197. https://doi.org/10.1021/ed065p194

    Article  CAS  Google Scholar 

  55. Lipscomb WN (1973) Three-center bonds in electron-deficient compounds. The localized molecular orbital approach. Acc Chem Res 6:257–262. https://doi.org/10.1021/ar50068a001

    Article  CAS  Google Scholar 

  56. Barbosa AGH, Henriques AM, Monteiro JGS et al (2018) The multiconfiguration spin-coupled approach for the description of the three-center two-electron chemical bond of some carbenium and nonclassical ions. Theor Chem Acc 137:21. https://doi.org/10.1007/s00214-017-2193-9

    Article  CAS  Google Scholar 

  57. Karadakov PB, Cooper DL, Duke BJ, Li J (2012) Spin-coupled theory for ‘N electrons in M orbitals’ active spaces. J Phys Chem A 116:7238–7244. https://doi.org/10.1021/jp303998h

    Article  CAS  PubMed  Google Scholar 

  58. Ruščic B, Schwarz M, Berkowitz J (1989) Molecular structure and thermal stability of B2H4 and B2H4+ species. J Chem Phys 91:4576–4581. https://doi.org/10.1063/1.456745

    Article  Google Scholar 

  59. Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  60. Li J, McWeeny R (2002) VB2000: pushing valence bond theory to new limits. Int J Quantum Chem 89:208–216. https://doi.org/10.1002/qua.10293

    Article  CAS  Google Scholar 

  61. Barbosa AGH, Barcelos AM (2009) The electronic structure of the F2, Cl2, Br2 molecules: the description of charge-shift bonding within the generalized valence bond ansatz. Theor Chem Acc 122:51–66. https://doi.org/10.1007/s00214-008-0484-x

    Article  CAS  Google Scholar 

  62. Kutzelnigg W, Schwarz WHE (1982) Formation of the chemical bond and orbital contraction. Phys Rev A 26:2361–2367. https://doi.org/10.1103/PhysRevA.26.2361

    Article  CAS  Google Scholar 

  63. Cosby PC, Helm H (1988) Experimental determination of the H3+ bond dissociation energy. Chem Phys Lett 152:71–74. https://doi.org/10.1016/0009-2614(88)87330-5

    Article  CAS  Google Scholar 

  64. Ruscic B, Feller D, Peterson KA (2014) Active Thermochemical Tables: dissociation energies of several homonuclear first-row diatomics and related thermochemical values. Theor Chem Acc 133:1415. https://doi.org/10.1007/s00214-013-1415-z

    Article  CAS  Google Scholar 

  65. Korkin AA, Schleyer PVR, McKee ML (1995) Theoretical ab initio study of neutral and charged B3Hn (n = 3–9) species. importance of aromaticity in determining the structural preferences. Inorg Chem 34:961–977. https://doi.org/10.1021/ic00108a031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant No. 305656/2014-7), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant No. E-26/202.939/2017) for financial support, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Grant No. Finance Code 001) for the PhD scholarship.

Funding

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Chaer Nascimento.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, D.W.O., Nascimento, M.A.C. Three-center two-electron bonds in the boranes B2H6 and B3H8 from the quantum interference perspective. Theor Chem Acc 139, 140 (2020). https://doi.org/10.1007/s00214-020-02654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02654-4

Keywords

Navigation