Skip to main content
Log in

Revisiting immiscibility through DFT chemical descriptors

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The notion of fluids immiscibility is examined from the field observations (i.e. rock samples or measurements in drill holes) and experimental point of view, as well as from usual thermodynamics and theoretical hard-soft and acid–base and density functional theory concepts. Basically, fluids immiscibility relates to a difference in chemical potentials between the elements in presence, i.e. some differences in the first derivative of their free energy. The latter usually plots as a quartic curve with upward concave curvature. However, it can develop a local maximum, inducing immiscibility. The theoretical chemistry concepts consider in addition to chemical potential, the second derivatives of the energy, as hardness and electrophilicity, or polarizability and magnetizability. Those are due to external field components, electric or magnetic, whereas the two former derivatives depend directly on the quantitative changes in the electronic cloud. Those descriptors give insights to reactions evolution during the reaction path. Their introduction in the definition of fluids immiscibility is examined, documenting chemical reactions and path reflecting an open system. Mapping the values of molecule polarizability shows a linear trend from silica to fayalite and leucite, i.e. magnesian and alkali-alumino silicates. A local positive anomaly in polarizability, due to the near-by influence of phosphorous controls the extent of the immiscibility area. The technique could easily be applied in other fields to control hydrophilicity or hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in quantum theory. Phys Rev 115:485–491

    Google Scholar 

  2. Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437–672

    CAS  Google Scholar 

  3. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190

    CAS  PubMed  Google Scholar 

  4. Badanina EV, Veskler I, Thomas R, Syrito LF, Trumbull R (2004) Magmatic evolution of Li–F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia). Chem Geol 210:113–133

    CAS  Google Scholar 

  5. Balhaus C, Fonseca ROC, Münker C, Kirchenbaur M, Zirner A (2015) Spheroidal textures in igneous rocks—textural consequences of H2O saturation in basaltic melts. Geochim Cosmochim Acta 167:241–252

    Google Scholar 

  6. Ballouard C, Elburg MA, Tappe S, Reinke C, Ueckermann H, Doggart S (2020) Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa). Ore Geol Rev 116:103252

    Google Scholar 

  7. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Phys Chem 98:1372–1377

    CAS  Google Scholar 

  8. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    PubMed  Google Scholar 

  9. Bogaerts M, Schmidt MW (2006) Experiments on silicate melt immiscibility in the system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5 and implications for natural magmas. Contrib Miner Petrol 152:257–274

    CAS  Google Scholar 

  10. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267

    CAS  Google Scholar 

  11. Carstens H (1982) Spherulitic crystallization in lamprophyric magmas and the origin of ocelli. Nature 297:493–494

    Google Scholar 

  12. Charles RJ (1969) Origin of immiscibility in silicate solutions. Phys Chem Glasses 10:169–178

    CAS  Google Scholar 

  13. Chattaraj PK, Giri S (2009) Electrophilicity index within a conceptual DFT framework. Annu Rep Prog Chem C 105:13–39

    CAS  Google Scholar 

  14. Chattaraj PK, Giri S, Duley S (2012) Update 2 of: electrophilicity index. Chem Rev 111:PR43–PR75

    Google Scholar 

  15. Chattaraj PK, Lee H, Parr RG (1991) HSAB principles. J Am Chem Soc 113:1855–1856

    CAS  Google Scholar 

  16. Chermak JA, Rimstidt JD (1989) Estimating the thermodynamic properties of silicate minerals at high temperatures from the sum of polyhedral contributions. Am Miner 75:1376–1380

    Google Scholar 

  17. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    CAS  Google Scholar 

  18. Currie KL (1972) A criterion for predicting liquid immiscibility in silicate melts. Nat Phys Sci 240:66–67

    CAS  Google Scholar 

  19. Diaz-Alvaro J, Rodriguez N, Rodriguez C, Fernandez C, Constanzo I (2017) Petrology and geochemistry of the orbicular granitoid of Caldera, Northern Chile. Models and hypotheses on the formation of radial orbicular textures. Lithos 284–285:327–346

    Google Scholar 

  20. Duley S, Vigneresse JL, Chattaraj PK (2012) Fitness landscapes in natural rocks system evolution: a conceptual DFT treatment. J Chem Sci 124:29–34

    CAS  Google Scholar 

  21. Elliston JN (1984) Orbicules: an indication of the crystallization of hydrosilicates. Earth Sci Rev 20:265–344

    CAS  Google Scholar 

  22. Emery X (2005) Simple and ordinary multigaussian kriging for estimating recoverable reserves. Math Geol 37:295–319

    CAS  Google Scholar 

  23. Gaussian 03 W, revision B.03 (2003) Gaussian, Inc., Pittsburgh

  24. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    CAS  PubMed  Google Scholar 

  25. Gerbaud V, Rodriguez-Donis I, Laszlo H, Péter L, Ferenc D, Xinqiang Y (2018) Review of extractive distillation. process design, operation optimization and control. Chem Eng Res Des 141:1–43

    Google Scholar 

  26. Ghanty TK, Ghosh SK (1993) Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. J Phys Chem 97:4951–4953

    CAS  Google Scholar 

  27. Ghanty TK, Gosh SK (1996) A density functional approach to hardness, polarizability, and valency of molecules in chemical reactions. J Phys Chem 100:12295–12298

    CAS  Google Scholar 

  28. Ghiorso MS, Carmichael ISE, Rivers ML, Sack O (1983) The Gibbs free energy of mixing of natural silicate liquids: an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib Miner Petrol 84:107–145

    CAS  Google Scholar 

  29. Gibbs JW (1873) A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans Conn Acad Arts Sci 2:382–404

    Google Scholar 

  30. Holness MB, Tegner C, Namur O, Pilbeam L (2015) The earliest history of the Skaergaard magma chamber: a textural and geochemical study of the Cambridge drill core. J Petrol 56:1199–1227

    CAS  Google Scholar 

  31. Holness MB, Tegner C, Nielsen TFD, Charlier B (2017) The thickness of the mushy layer on the floor of the Skaergaard magma chamber at apatite saturation. J Petrol 58:909–932

    CAS  Google Scholar 

  32. Hudon P, Baker DR (2002) The nature of phase separation in binary oxide melts and glasses: I. Silicate systems. J Non-Cryst Solids 303:299–345

    CAS  Google Scholar 

  33. Hunter RH, Sparks RSJ (1987) The differentiation of the Skaergaard Intrusion. Contrib Miner Petrol 95:451–461

    CAS  Google Scholar 

  34. Iveson AA, Webster JD, Rowe MC, Neill OW (2019) Fluid-melt trace-element partitioning behaviour between evolved melts and aqueous fluids: experimental constraints on the magmatic-hydrothermal conditions. Chem Geol 516:18–41

    CAS  Google Scholar 

  35. Jakobsen JK, Veksler I, Tegner C, Brooks CK (2005) Immiscible iron- and silica-rich melt in basalt petrogenesis documented in the Skaergaard intrusion. Geology 33:885–888

    CAS  Google Scholar 

  36. Jana G, Pal R, Sural S, Chattaraj PK (2020) Quantitative structure–toxicity relationship models based on hydrophobicity and electrophilicity. In: Roy K (ed) Ecotoxicological QSARs. Methods in pharmacology and toxicology. Humana, Totowa, pp 661–679

    Google Scholar 

  37. Kamenetsky VS, Kamenetsky MB (2010) Magmatic fluids immiscible with silicate melts: examples from inclusions in phenocrysts and glasses, and implications for magma evolution and metal transport. Geofluids 10:293–311

    CAS  Google Scholar 

  38. Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Google Scholar 

  39. Landau I, Lifchitz R (1967) Physique Théorique. Théorie des Champs. Mir, Moscow

    Google Scholar 

  40. Lasaga AC, Cygan RT (1982) Electronic and ionic polarizabilities of silicate minerals. Am Miner 67:328–334

    CAS  Google Scholar 

  41. Law JY (2014) Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. J Phys Chem Lett 5:686–688

    CAS  PubMed  Google Scholar 

  42. Levin EM, Block S (1957) Structural interpretation of immiscibility in oxide systems: I. Analysis and calculation of immiscibility. J Am Ceram Soc 40:95–106

    CAS  Google Scholar 

  43. Ma H, Hu Y, Fang T (1999) TWOLIQ.FOR: a FORTRAN77 program for simulating immiscibility in silicate liquids. Comput Geosci 5:151–159

    Google Scholar 

  44. Maaløe S (1976) The zoned plagioclase of the Skaergaard Intrusion, East Greenland. J Petrol 17:398–419

    Google Scholar 

  45. Maaløe S (1978) The origin of rhythmic layering. Miner Mag 42:337–345

    Google Scholar 

  46. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372

    CAS  Google Scholar 

  47. McBirney AR (1996) The Skaergaard intrusion. Dev Petrol 16:147–180

    Google Scholar 

  48. McBirney AR, Naslund HR (1990) The differentiation of the Skaergaard intrusion. A discussion of Hunter and Sparks (Contrib Mineral Petrol 95:451–461). Contrib Miner Petrol 104:235–247

    CAS  Google Scholar 

  49. Miranda-Quintana RA (2017) Thermodynamic electrophilicity. J Chem Phys 146:214113

    PubMed  Google Scholar 

  50. Miranda-Quintana RA, Chattaraj PK, Ayers PW (2017) Finite temperature grand canonical ensemble study of the minimum electrophilicity principle. J Chem Phys 147:124103

    PubMed  Google Scholar 

  51. Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108:4315–4320

    CAS  Google Scholar 

  52. Mysen BO (1988) Structure and properties of silicate melts. Elsevier, New York

    Google Scholar 

  53. Nielsen TFD (2004) The shape and volume of the Skaergaard Intrusion, Greenland: implications for mass balance and bulk composition. J Petrol 46:507–530

    Google Scholar 

  54. Novick-Cohen A (2008) The Cahn–Hilliard equation. In: Dafermos CM, Feireisl E (eds) Handbook of differential equations. Vol. 4. Evolutionary equations. Elsevier, New York, pp 201–228

    Google Scholar 

  55. Pal R, Jana G, Sural P, Chattaraj PK (2018) Hydrophobicity versus electrophilicity: a new protocol toward quantitative structure–toxicity relationship. Chem Biol Drug Des 93:1083–1095

    PubMed  Google Scholar 

  56. Pan S, Sola M, Chattaraj PK (2013) On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J Phys Chem A 117:1843–1852

    CAS  PubMed  Google Scholar 

  57. Parr RG, Bartolotti LJ (1982) On the geometric mean principle for electronegativity equalization. J Am Chem Soc 104:3801–3803

    CAS  Google Scholar 

  58. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854

    CAS  Google Scholar 

  59. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    CAS  Google Scholar 

  60. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    CAS  Google Scholar 

  61. Parr RG, von Szentpály L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  62. Pauling L (1932) The nature of the chemical bonds. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582

    CAS  Google Scholar 

  63. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

  64. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740

    CAS  Google Scholar 

  65. Pearson RG (1997) Chemical hardness. Wiley, New York, p 210

    Google Scholar 

  66. Roedder E (1951) Low temperature liquid immiscibility in the system K2O–FeO–Al2O3–SiO2. Am Miner 36:282–286

    CAS  Google Scholar 

  67. Roedder E (1978) Silicate liquid immiscibility in magmas and in the system K2O–FeO–Al2O3–SiO2: an example of serendipity. Geochim Cosmochim Acta 42:1597–1617

    CAS  Google Scholar 

  68. Roedder E (1984) Fluid inclusions. Rev Mineral 12:646

    Google Scholar 

  69. Roedder E (1992) Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim Cosmochim Acta 56:5–20

    CAS  Google Scholar 

  70. Sanderson RT (1951) An interpretation of bond lengths and a classification of bonds. Science 1951(114):670–672

    Google Scholar 

  71. Sanderson RT (1976) Chemical bonds and bond energy. Academic, New York

    Google Scholar 

  72. Saxena S (1973) Thermodynamics of rock-forming crystalline solutions. Springer, Heidelberg, p 188

    Google Scholar 

  73. Shelby JE (2005) Introduction to glass science and technology. Royal Society of Chemistry, London

    Google Scholar 

  74. Simon MO, Li CJ (2012) Green chemistry oriented synthesis in water. Chem Soc Rev 41:1415–1427

    CAS  PubMed  Google Scholar 

  75. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    CAS  Google Scholar 

  76. Tanwar A, Pal S, Roy DR, Chattaraj PK (2006) Minimum magnetizability principle. J Chem Phys 125:056101

    PubMed  Google Scholar 

  77. Taylor P, Campbell AB, Owen DK (1982) Liquid immiscibility in the systems X2O–MO–B2O3–SiO2(X = Na, K; M = Mg, Ca, Ba) and Na2O–MgO–BaO–B2O3–SiO2. J Am Ceram Soc 66:347–351

    Google Scholar 

  78. Thomas R, Webster JD, Rhede D, Seifert W, Rickers K, Förster H, Heinrich W, Davidson P (2006) The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals. Lithos 91:137–149

    CAS  Google Scholar 

  79. Thompson AB, Aerts M, Hack AC (2007) Liquid immiscibility in silicate melts and related systems. Rev Mineral Geochem 65:99–127

    CAS  Google Scholar 

  80. Thy P, Lesher CE, Tegner C (2009) The Skaergaard liquid line of descent revisited. Contrib Miner Petrol 157:735–747

    CAS  Google Scholar 

  81. Veksler IV, Teptelev MP (1990) Conditions for crystallization and concentration of perovskite-type minerals in alkaline magmas. Lithos 26:177–189

    CAS  Google Scholar 

  82. Veskler IV, Petibon C, Jenner GA, Dorfmann AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Google Scholar 

  83. Vigneresse JL, Duley S, Chattaraj PK (2011) Describing the chemical character of a magma. Chem Geol 287:102–113

    CAS  Google Scholar 

  84. Vigneresse JL (2012) Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation. Lithos 153:154–164

    CAS  Google Scholar 

  85. Vigneresse JL (2018) Variations in chemical descriptors during reactions. Chem Phys Lett 706:577–585

    CAS  Google Scholar 

  86. Vigneresse JL, Truche L (2018) Chemical descriptors for describing physico-chemical properties with applications to geosciences. J Mol Model 24:231. https://doi.org/10.1007/s00894-018-3770-0

    Article  PubMed  Google Scholar 

  87. Vigneresse JL, Truche L, Richard A (2019) How do metals escape from magmas to form porphyry-type ore deposits? Ore Geol Rev 105:310–336

    Google Scholar 

  88. Wager LR, Deer WA (1939) Geological investigations in East Greenland. Part III. The petrology of the Skaergaard Intrusion, Kangerdlugssuaq. Meddelselser om Grønland 105:346

    Google Scholar 

  89. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the sixth annual congress in genetics, vol 1, pp 356–366

  90. Yildiz D, Bozkaya U (2016) Assessment of the extended Koopmans' theorem for the chemical reactivity: Accurate computations of chemical potentials, chemical hardnesses, and electrophilicity indices. J Comput Chem 37:345–353

  91. Ylimaz O (2001) Seismic data analysis. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

  92. Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908

    CAS  Google Scholar 

Download references

Acknowledgements

This paper came out from discussions about ore generation in a magmatic context, with colleagues, Antonin Richard and Laurent Truche, both at GeoRessources, Nancy. Interestingly, the lab, former CREGU, has been founded by Bernard Poty, partly for studying fluid inclusions, when he came back from US and invented the Chaixmeca stage in 1972. Later on, I was introduced to theoretical chemistry by Pratim K Chattaraj at IIT Kharagpur, India. He encouraged me to continue in this way. Fruitful discussions about the Skaergaard, initially with late Alexander McBirney, and later with Marian Holness and Troels Nielsen guided my reflections. Three anonymous reviewers are acknowledged for their valuable comments about DFT and cDFT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Vigneresse.

Ethics declarations

Conflict of interest

The author declare that no conflict of interest.

Availability of data and material

The whole data set is totally available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneresse, JL. Revisiting immiscibility through DFT chemical descriptors. Theor Chem Acc 139, 142 (2020). https://doi.org/10.1007/s00214-020-02652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02652-6

Keywords

Navigation