Skip to main content
Log in

Physical Chemistry of Water Fluids As a Basis for Technological Processes with Their Participation

  • IN COMMEMORATION OF ACADEMICIAN V.V. LUNIN: SELECTED CONTRIBUTIONS FROM HIS STUDENTS AND COLLEAGUES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Some physicochemical properties of water fluids (WFs) that underlie their applications and criteria for determining the parameter domains with qualitative differences in their physical state were considered. The qualitative relationship between the type and intensity of intermolecular interactions in various substances and their macroscopic characteristics (normal boiling temperatures and critical points) was analyzed. Special attention was paid to the density as a macroscopic parameter that reflects the influence of intermolecular interactions in the WF. Despite the technological importance of isobaric dependences, for understanding the mechanisms of various effects on the properties of fluids, it is necessary to consider isochoric and isothermal dependences, especially when analyzing the dielectric properties of water and its dissociation into counterions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. N. Ipat’ev, Catalytic Reactions at High Temperatures and Pressures: 1900–1933 (Akad. Nauk SSSR, Moscow, 1936) [in Russian].

    Google Scholar 

  2. I. R. Krichevskii and Ya. S. Kazarnovskii, Zh. Fiz. Khim. 13, 378 (1939).

    CAS  Google Scholar 

  3. I. R. Krichevskii and D. Yu. Gamburg, Zh. Fiz. Khim. 17, 215 (1943).

    Google Scholar 

  4. I. R. Krichevskii, Phase Equilibria in Solutions at High Pressures (Goskhimizdat, Moscow, 1946) [in Russian].

    Google Scholar 

  5. I. R. Krichevskii, Thermodynamics of Critical Infinitely Dilute Solutions (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  6. M. Temkin and V. Pyzhev, Zh. Fiz. Khim. 13, 851 (1939).

    CAS  Google Scholar 

  7. M. Temkin, Zh. Fiz. Khim. 17, 269 (1943).

    CAS  Google Scholar 

  8. M. Temkin, Zh. Fiz. Khim. 17, 414 (1943).

    CAS  Google Scholar 

  9. D. S. Tsiklis, Layering of Gas Mixtures (Khimiya, Moscow, 1969) [in Russian].

    Google Scholar 

  10. D. S. Tsiklis, Technique of Physicochemical Research at High and Superhigh Pressures, 4th ed. (Khimiya, Moscow, 1976) [in Russian].

    Google Scholar 

  11. M. G. Gonikberg, Chemical Equilibrium and Reaction Rate at High Pressures, 2nd ed. (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  12. L. P. Filippov, Similarity of Properties of Substances (Mosk. Gos. Univ., Moscow, 1978) [in Russian].

    Google Scholar 

  13. L. P. Filippov, Prediction of Thermophysical Properties of Liquids and Gases (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  14. N. B. Vargaftic, Handbook of Thermophysical Properties of Gases and Liquids (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  15. Reference Book of Nitrogenman, Ed. by E. Ya. Mel’nikov (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  16. E. Kiran and J. M. H. Levelt Sengers, in Supercritical Fluids. Fundamentals for Application, Ed. by E. Kiran and J. M. H. Levelt Sengers, Vol. 273 of NATO Science Ser. E: Applied Science (Springer Science, New York, 1994), p. IX.

  17. Supercritical Fluids. Fundamentals for Application, Ed. by E. Kiran and J. M. H. Levelt Sengers, Vol. 273 of NATO Science, Ser. E: Applied Science (Springer Science, New York, 1994).

    Google Scholar 

  18. Sverkhkrit. Fluidy Teor. Prakt. 15 (1), 3 (2020).

  19. A. A. Galkin and V. V. Lunin, Russ. Chem. Rev. 74, 21 (2005).

    Article  CAS  Google Scholar 

  20. M. N. Danchevskaya, Y. D. Ivakin, S. N. Torbin, et al., J. Mater. Sci. 41, 1385 (2006).

    Article  CAS  Google Scholar 

  21. M. N. Danchevskaya, Y. D. Ivakin, S. N. Torbin, and G. P. Muravieva, J. Supercrit. Fluids 46, 358 (2008).

    Article  CAS  Google Scholar 

  22. M. Yu. Sinev, Yu. D. Ivakin, D. P. Shashkin, et al., Sverkhkrit. Fluidy: Teor. Prakt. 14 (3), 45 (2019).

    Google Scholar 

  23. A. A. Maerle, I. A. Kasyanov, I. F. Moskovskaya, and B. V. Romanovsky, Russ. J. Phys. Chem. A 90, 1212 (2016).

    Article  CAS  Google Scholar 

  24. I. I. Ivanova, Y. G. Kolyagin, I. A. Kasyanov, et al., Angew. Chem. Int. Ed. 56, 15344 (2017).

    Article  CAS  Google Scholar 

  25. A. V. Shkuropatov, E. E. Knyazeva, O. A. Ponomareva, and I. I. Ivanova, Neftekhimiya 58, 529 (2018).

    Article  Google Scholar 

  26. G. Brunner, Hydrothermal and Supercritical Water Processes. Supercritical Fluid Science and Technology, Vol. 5 of Elsevier Book Series (Elsevier, Amsterdam, 2014).

  27. Near-Critical and Supercritical Water and Their Applications for Biorefineries, Ed. by Zh. Fang and Ch. Xu (Springer Science, Dordrecht, 2014).

    Google Scholar 

  28. M. Yu. Sinev and O. V. Shapovalova, Sverkhkrit. Fluidy: Teor. Prakt. 15 (3) (2020, in press).

  29. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (2018). https://webbook.nist.gov/chemistry/. https://doi.org/10.18434/T4D303

  30. E. A. Lagunova, Yu. D. Ivakin, M. Yu. Sinev, et al., Sverkhkrit. Fluidy: Teor. Prakt. 14 (4), 49 (2019).

    Google Scholar 

  31. D. A. Tolstunov and L. P. Filippov, Zh. Fiz. Khim. 56, 129 (1982).

    CAS  Google Scholar 

  32. A. D. Okhotsimskii and L. P. Filippov, Sov. Phys. Dokl. 30, 100 (1985).

    Google Scholar 

  33. J. E. Jones, Proc. R. Soc. London, Ser. A 106, 463 (1924).

    Article  CAS  Google Scholar 

  34. J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).

    Article  CAS  Google Scholar 

  35. G. A. Cisneros, K. T. Wikfeldt, L. Ojamäe, et al., Chem. Rev. 116, 7501 (2016).

    Article  CAS  Google Scholar 

  36. The Chemist’s Reference Book (Goskhimizdat, Moscow, Leningrad, 1963), Vol. 1 [in Russian].

  37. M. Kh. Karapet’yants and M. L. Karapet’yants, Principle Thermodynamic Constants of Inorganic and Organic Substances (Khimiya, Moscow, 1968) [in Russian].

    Google Scholar 

  38. Short Handbook of Physicochemical Values, Ed. by K. P. Mishchenko and A. A. Ravdel’, 7th ed. (Khimiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  39. Properties of Inorganic Compounds, The Handbook, Ed. by V. A. Rabinovich (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  40. I. B. Rabinovich, Isotope Substitution Effects on the Physicochemical Properties of Liquids (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  41. M. Yu. Sinev, Yu. A. Gordienko, E. A. Ponomareva, and Yu. D. Ivakin, Sverkhkrit. Fluidy: Teor. Prakt. 14 (2), 116 (2019).

    Google Scholar 

  42. M. V. Avdeev, V. N. Bagratashvili, A. N. Konovalov, et al., Sverkhkrit. Fluidy: Teor. Prakt. 2 (1), 28 (2007).

    Google Scholar 

  43. W. L. Marshall and E. U. Franck, J. Phys. Chem. Ref. Data 10, 295 (1981).

    Article  CAS  Google Scholar 

  44. D. P. Fernandez, A. R. H. Goodwin, E. W. Lemmon, et al., J. Phys. Chem. Ref. Data 26, 1125 (1997).

    Article  CAS  Google Scholar 

  45. I. M. Abdulagatov and P. V. Skripov, Sverkhkrit. Fluidy: Teor. Prakt. 15 (1), 34 (2020).

    Google Scholar 

  46. Yu. E. Gorbatyi, Doctoral (Phys. Math.) Dissertation (Inst. Chem. Phys. Acad. Sci. USSR, Moscow, 1988).

  47. E. A. Lagunova, Yu. D. Ivakin, M. Yu. Sinev, et al., Sverkhkrit. Fluidy: Teor. Prakt. 14 (4), 49 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

With deep gratitude I keep memory of the years when I had good fortune to communicate with Academician Lunin and work with him both on various projects in the “supercritical” community and in the editorial boards of the journals headed by Valery Vasil’evich. With gratitude and sorrow I also recall my first superior and close acquaintance who also recently passed away—Aleksandr Zakharovich Shabutov, with whom I studied a complex problem, namely, the solubility of chlorine and hydrogen chloride in various media and worked on apparatus design and high-pressure experimental techniques.

Funding

This study was financially supported by the Russian Foundation for Basic Research (project no. 18-29-06055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Sinev.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinev, M.Y. Physical Chemistry of Water Fluids As a Basis for Technological Processes with Their Participation. Russ. J. Phys. Chem. 95, 418–428 (2021). https://doi.org/10.1134/S0036024421030195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421030195

Keywords:

Navigation