Skip to main content
Log in

Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The energy eigenvalues for confined \({\text{H}}_{2}^{ + }\) molecule are computed by using the variational method. The approach proposed here uses a trial molecular function for the ground state composed of a linear combination of atomic orbitals for confined hydrogen atom; for other states, we build the trial molecular eigenfunctions inspired in atomic orbitals and by using the orthogonality of the wave functions. The molecule is confined in an impenetrable prolate spheroidal box. The atomic orbital for 1s state is built from a previous suggestion inspired by the factorization of the Schrödinger equation, and for 2s state, we used the Gram–Schmidt process to build a trial atomic function orthogonal with 1s trial function. The main contribution of this work is to propose new wave functions to be used for the confined hydrogen ion molecule. The results obtained are in agreement with other results present in the literature, and the trial functions proposed here can be used to study other confined molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sabin JR, Brandas EJ (2009) Advances in quantum chemistry: theory of confined quantum systems-part one, vol 57. Academic Press, New York

    Google Scholar 

  2. Sabin JR, Brandas EJ (2009) Advances in quantum chemistry: theory of confined quantum systems-part two, vol 58. Academic Press, New York

    Google Scholar 

  3. Ley-Koo E (2018) Revista mexicana de física 64(4):326–363

    Article  Google Scholar 

  4. Saha B, Mukherjee T, Mukherjee P et al (2002) Theor Chem Acc 108:305–310

    Article  CAS  Google Scholar 

  5. Montgomery HE, Pupyshev VI (2015) Theor Chem Acc 134:1598

    Article  Google Scholar 

  6. Mateos-Cortés S, Ley-Koo E, Cruz SA (2002) Int J Quantum Chem 86:376–389

    Article  Google Scholar 

  7. LeSar R, Herschbach DR (1983) J Chem Phys 87:5202–5206

    Article  CAS  Google Scholar 

  8. Connerade JP, Dolmatov VK, Lakshmi PA (2000) J Phys B At Mol Opt Phys 33:251–264

    Article  CAS  Google Scholar 

  9. Lv H, Yao M, Li Q, Liu R, Liu B, Yao Z, Liu D, Liu Z, Liu J, Chen Z, Zou B, Cui T, Liu B (2015) Sci Rep 5:13234

    Article  CAS  Google Scholar 

  10. Trzaskowsk B, Adamowicz L (2009) Theor Chem Acc 124:95–103

    Article  Google Scholar 

  11. Drigo Filho E, Ricotta RM (2002) Phys Lett A 299:137–143

    Article  CAS  Google Scholar 

  12. Laughlin C (2009) Adv Quantum Chem 57:203–239

    Article  CAS  Google Scholar 

  13. Patil SH (2001) J Phys B At Mol Opt Phys 34:1049

    Article  CAS  Google Scholar 

  14. Olivares-Pilón H, Cruz S (2017) Int J Quantum Chem 117:e25399

    Article  Google Scholar 

  15. Cottrell TL (1951) Trans Faraday Soc 47:337–342

    Article  CAS  Google Scholar 

  16. Hernández-Esparza R, Landeros-Rivera B, Vargas R, Garza J (2019) Ann Phys 531:1800476

    Article  Google Scholar 

  17. Ley-Koo E, Cruz SA (1981) J Chem Phys 74:4603–4610

    Article  CAS  Google Scholar 

  18. Sarsa A, Le Sech C (2012) J Phys B At Mol Opt Phys 45:205101

    Article  Google Scholar 

  19. Micca Longo G, Longo S, Giordano D (2015) Phys Scr 90:025403

    Article  Google Scholar 

  20. da Silva JF, Silva FR, Drigo Filho E (2016) Int J Quantum Chem 116:497–503

    Article  Google Scholar 

  21. LeSar R, Herschbach DR (1981) J Phys Chem 85:2798–2804

    Article  CAS  Google Scholar 

  22. Pang T (1994) Phys Rev A 49:1709–1713

    Article  CAS  Google Scholar 

  23. Cruz SA, Soullard J, Gamaly E (1999) Phys Rev A 60:2207

    Article  CAS  Google Scholar 

  24. Colín-Rodríguez R, Cruz SA (2010) J Phys B At Mol Opt Phys 43:235102

    Article  Google Scholar 

  25. de Oliveira Batael H, Drigo Filho E (2018) Theor Chem Acc 137:65

    Article  Google Scholar 

  26. Powers A, Marsalek O, Xu M, Ulivi L, Colognesi D, Tuckerman ME, Bacic Z (2016) J Phys Chem Lett 7:308

    Article  CAS  Google Scholar 

  27. Cruz SA, Soullard J (2004) Chem Phys Lett 391:138–142

    Article  CAS  Google Scholar 

  28. Jena NK, Tripathy MK, Samanta AK et al (2012) Theor Chem Acc 131:1205

    Article  Google Scholar 

  29. Kozłoxwska J, Roztoczyńska A, Bartkowiak W (2015) Chem Phys 456:98–105

    Article  Google Scholar 

  30. Weber HJ, Arfken GB (2004) Essential mathematical methods for physicists. Elsevier, San Diego

    Google Scholar 

  31. Madsen MM, Peek JM (1970) Atomic Data Nucl Data Tables 126:171–204

    Google Scholar 

  32. Scott TC, Aubert-Frécon M, Grotendorst J (2006) Chem Phys 324(2–3):323–338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HOB would like to thank National Council for Scientific and Technological Development (CNPq-Grant Process No. 164944/2018-4) for financial support. The authors recognize the contribution of Professor Fernando R. Ornellas for encouraging several researchers in the theoretical approach on molecular structures and properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo de Oliveira Batael.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Batael, H., Drigo Filho, E. Excited states for hydrogen ion molecule confined by a prolate spheroidal boxes: variational approach. Theor Chem Acc 139, 129 (2020). https://doi.org/10.1007/s00214-020-02645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02645-5

Keywords

Navigation