Skip to main content
Log in

On the radicalar properties of graphene fragments: double-hybrid DFT and perturbation theory approaches

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The physical–chemical properties of polycyclic aromatic hydrocarbons (PAHs), molecules formed by fused carbon rings passivated by hydrogen atoms, make them attractive to several applications, including light-emitting diodes, photovoltaic cells, and transistors. They borrow some of the unique properties of graphene, nanotubes, and fullerenes. Additionally, radicals related to these structures may be involved in carcinogenic effects. In this work, electronic and energetic aspects of PAHs, including triangulenes, were analyzed using BLYP and B2PLYP density functionals as well as with unrestricted Hartree–Fock (UHF) and second-order Møller–Plesset perturbation (MP2) theories. The results show that DFT BLYP and B2PLYP functionals predict adiabatic singlet–triplet energy gap in better agreement to reference data when compared to MP2, with the double-hybrid B2PLYP producing better results than BLYP. On the other hand, for calculation of properties involving radical species, as homolytic bond dissociation energies, B2PLYP overestimates the binding energy, especially for larger PAHs. The erratic behavior of UHF and MP2 for open-shell species limits the B2PLYP performance regarding the stability analysis of triangulenes over different multiplicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reddy SN, Mahapatra S (2015) Theoretical study on molecules of interstellar interest. II. Radical cation of compact polycyclic aromatic hydrocarbons. J Phys Chem B 119:11391–11402. https://doi.org/10.1021/acs.jpcb.5b03614

    Article  CAS  PubMed  Google Scholar 

  2. Michoulier E, Ben Amor N, Rapacioli M et al (2018) Theoretical determination of adsorption and ionisation energies of polycyclic aromatic hydrocarbons on water ice. Phys Chem Chem Phys 20:11941–11953. https://doi.org/10.1039/c8cp01175c

    Article  CAS  PubMed  Google Scholar 

  3. Michoulier E, Noble JA, Simon A et al (2018) Adsorption of PAHs on interstellar ice viewed by classical molecular dynamics. Phys Chem Chem Phys 20:8753–8764. https://doi.org/10.1039/c8cp00593a

    Article  CAS  PubMed  Google Scholar 

  4. Simon A, Spiegelman F (2013) Conformational dynamics and finite-temperature infrared spectra of the water octamer adsorbed on coronene. Comput Theor Chem 1021:54–61. https://doi.org/10.1016/j.comptc.2013.06.023

    Article  CAS  Google Scholar 

  5. Allison TC, Burgess DR (2015) First-principles prediction of enthalpies of formation for polycyclic aromatic hydrocarbons and derivatives. J Phys Chem A 119:11329–11365. https://doi.org/10.1021/acs.jpca.5b07908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ewa B, Danuta MŠ (2017) Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. J Appl Genet 58:321–330. https://doi.org/10.1007/s13353-016-0380-3

    Article  CAS  PubMed  Google Scholar 

  7. Munoz B, Albores A (2011) DNA damage caused by polycyclic aromatic hydrocarbons: mechanisms and markers. Sel Top DNA Repair. https://doi.org/10.5772/22527

    Article  Google Scholar 

  8. Lakshman MK, Kole PL, Chaturvedi S et al (2000) Methyl group-induced helicity in 1,4-dimethylbenzo[c]phenanthrene and its metabolites: synthesis, physical, and biological properties. J Am Chem Soc 122:12629–12636. https://doi.org/10.1021/ja002072w

    Article  CAS  Google Scholar 

  9. Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21:257–276. https://doi.org/10.2133/dmpk.21.257

    Article  CAS  PubMed  Google Scholar 

  10. Khatymov RV, Muftakhov MV, Shchukin PV (2017) Negative ions, molecular electron affinity and orbital structure of cata-condensed polycyclic aromatic hydrocarbons. Rapid Commun Mass Spectrom 31:1729–1741. https://doi.org/10.1002/rcm.7945

    Article  CAS  PubMed  Google Scholar 

  11. Salvador MA, Sousa CP, Maciel CD et al (2018) Experimental and computational studies of the interactions between carbon nanotubes and ionic liquids used for detection of acetaminophen. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2018.09.017

    Article  Google Scholar 

  12. Tachikawa H (2017) Hydrogen atom addition to the surface of graphene nanoflakes: a density functional theory study. Appl Surf Sci 396:1335–1342. https://doi.org/10.1016/j.apsusc.2016.11.158

    Article  CAS  Google Scholar 

  13. Donchev AG (2007) Ab initio study of the effects of orientation and corrugation for H 2 adsorbed on polycyclic aromatic hydrocarbons. J Chem Phys 126:1–7. https://doi.org/10.1063/1.2717174

    Article  CAS  Google Scholar 

  14. Zhechkov L, Heine T, Seifert G (2011) OPAL: a multiscale multicenter simulation package based on MPI-2 protocol. Int J Quantum Chem 111:4020–4029. https://doi.org/10.1002/qua

    Article  Google Scholar 

  15. Wagle D, Kamath G, Baker GA (2013) Elucidating interactions between ionic liquids and polycyclic aromatic hydrocarbons by quantum chemical calculations. J Phys Chem C 117:4521–4532. https://doi.org/10.1021/jp310787t

    Article  CAS  Google Scholar 

  16. Chakarova-Käck SD, Vojvodic A, Kleis J et al (2010) Binding of polycyclic aromatic hydrocarbons and graphene dimers in density functional theory. New J Phys 12:013017. https://doi.org/10.1088/1367-2630/12/1/013017

    Article  CAS  Google Scholar 

  17. Das A, Pinheiro M, Machado FBC et al (2018) Tuning the biradicaloid nature of polycyclic aromatic hydrocarbons: the effect of graphitic nitrogen doping in zethrenes. ChemPhysChem 19:2492–2499. https://doi.org/10.1002/cphc.201800650

    Article  CAS  PubMed  Google Scholar 

  18. Nieman R, Das A, Aquino AJA et al (2017) Single and double carbon vacancies in pyrene as first models for graphene defects: a survey of the chemical reactivity toward hydrogen. Chem Phys 482:346–354. https://doi.org/10.1016/j.chemphys.2016.08.007

    Article  CAS  Google Scholar 

  19. Rapacioli M, Spiegelman F, Talbi D et al (2009) Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters. J Chem Phys 130:1–10. https://doi.org/10.1063/1.3152882

    Article  CAS  Google Scholar 

  20. Silva NJ, Machado FBC, Lischka H, Aquino AJA (2016) ππ stacking between polyaromatic hydrocarbon sheets beyond dispersion interactions. Phys Chem Chem Phys 18:22300–22310. https://doi.org/10.1039/c6cp03749f

    Article  CAS  PubMed  Google Scholar 

  21. Parac M, Grimme S (2003) A TDDFT study of the lowest excitation energies of polycyclic aromatic hydrocarbons. Chem Phys 292:11–21. https://doi.org/10.1016/S0301-0104(03)00250-7

    Article  CAS  Google Scholar 

  22. Grimme S, Parac M (2003) Substantial errors from time-dependent density functional theory for the calculation of excited states of large p systems. Chem Phys Chem. https://doi.org/10.1002/cphc.200390047

    Article  PubMed  Google Scholar 

  23. Buragohain M, Pathak A, Hammonds M, Sarre PJ (2013) Theoretical quantum chemical study of protonated—deuteronated PAHs: interstellar implications. In: AIP conference proceedings, pp 258–264

  24. Powell J, Heider EC, Campiglia A, Harper JK (2016) Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory. J Mol Spectrosc 328:37–45. https://doi.org/10.1016/j.jms.2016.06.015

    Article  CAS  Google Scholar 

  25. Taylor P, Yadav A, Mishra PC (2013) Molecular physics: an international journal at the interface between chemistry and physics lowest ΠΠ* electronic transitions in linear and two-dimensional polycyclic aromatic hydrocarbons: enhanced electron density edge effect. Mol Phys 00:1–8. https://doi.org/10.1080/00268976.2013.830786

    Article  CAS  Google Scholar 

  26. Cioslowski J, Liu G, Martinov M et al (1996) Energetics and site specificity of the homolytic C–H bond cleavage in benzenoid hydrocarbons: an ab initio electronic structure study. J Am Chem Soc 118:5261–5264. https://doi.org/10.1021/ja9600439

    Article  CAS  Google Scholar 

  27. Barckholtz C, Barckholtz TA, Hadad CM (1999) C–H and N–H bond dissociation energies of small aromatic hydrocarbons. J Am Chem Soc 121:491–500. https://doi.org/10.1021/ja982454q

    Article  CAS  Google Scholar 

  28. Chipem FAS, Dash N, Krishnamoorthy G (2011) Role of nitrogen substitution in phenyl ring on excited state intramolecular proton transfer and rotamerism of 2-(2′-hydroxyphenyl)benzimidazole: a theoretical study. J Chem Phys. https://doi.org/10.1063/1.3562124

    Article  PubMed  Google Scholar 

  29. Pérez-Guardiola A, Ortiz-Cano R, Sandoval-Salinas ME et al (2019) From cyclic nanorings to single-walled carbon nanotubes: disclosing the evolution of their electronic structure with the help of theoretical methods. Phys Chem Chem Phys 21:2547–2557. https://doi.org/10.1039/c8cp06615a

    Article  CAS  PubMed  Google Scholar 

  30. Inoue J, Fukui K, Kubo T et al (2001) The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-kekulé polynuclear benzenoid hydrocarbon. J Am Chem Soc 123:12702–12703

    Article  CAS  Google Scholar 

  31. Haddon RC (1975) Quantum chemical studies in the design of organic metals. III: Odd-alternant hydrocarbons-the phenalenyl (ply) system. Aust J Chem 28:2343–2351. https://doi.org/10.1071/CH9752343

    Article  CAS  Google Scholar 

  32. Morita Y, Suzuki S, Sato K, Takui T (2011) Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat Chem 3:197–204. https://doi.org/10.1038/nchem.985

    Article  CAS  PubMed  Google Scholar 

  33. Sharma V, Som N, Dabhi SD, Jha PK (2018) Tailoring the electronic and magnetic properties of peculiar triplet ground state polybenzoid “triangulene”. Chem Select 3:2390–2397. https://doi.org/10.1002/slct.201703054

    Article  CAS  Google Scholar 

  34. May K, Unterreiner BV, Dapprich S, Ahlrichs R (2000) Structures, C–H and C–CH3 bond energies of hydrogenated polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 2:5084–5088. https://doi.org/10.1039/b005597m

    Article  CAS  Google Scholar 

  35. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  36. Sæbø S, Almlöf J (1989) Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem Phys Lett 154:83–89. https://doi.org/10.1016/0009-2614(89)87442-1

    Article  Google Scholar 

  37. Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220:122–128. https://doi.org/10.1016/0009-2614(94)00116-2

    Article  CAS  Google Scholar 

  38. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  39. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  40. Parr RG, Weitao Y (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  41. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  42. Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8:4–9. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  43. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  45. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  46. Liu S, Ma Y-Z, Yang Y-F et al (2018) Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole. Chin Phys B. https://doi.org/10.1088/1674-1056/27/2/023103

    Article  Google Scholar 

  47. Mineo H, Fujimura Y (2017) Quantum control of coherent π-electron ring currents in polycyclic aromatic hydrocarbons. J Chem Phys doi. https://doi.org/10.1063/1.5004504

    Article  Google Scholar 

  48. Sure R, Brandenburg JG, Grimme S (2016) Small atomic orbital basis set first-principles quantum chemical methods for large molecular and periodic systems: a critical analysis of error sources. Chem Open 5:94–109. https://doi.org/10.1002/open.201500192

    Article  CAS  Google Scholar 

  49. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  50. Huzak M, Hajgató B, Deleuze MS (2012) Benchmark theoretical study of the ionization energies, electron affinities and singlet–triplet energy gaps of azulene, phenanthrene, pyrene, chrysene and perylene. Chem Phys 406:55–64. https://doi.org/10.1016/j.chemphys.2012.08.003

    Article  CAS  Google Scholar 

  51. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  52. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  53. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  54. Gill PMW, Pople JA, Radom L, Nobes RH (1988) Why does unrestricted Møller–Plesset perturbation theory converge so slowly for spin-contaminated wave functions? J Chem Phys 89:7307–7314. https://doi.org/10.1063/1.455312

    Article  CAS  Google Scholar 

  55. Perumal S, Minaev B, Ågren H (2012) Spin–spin and spin–orbit interactions in nanographene fragments: a quantum chemistry approach. J Chem Phys. https://doi.org/10.1063/1.3687002

    Article  PubMed  Google Scholar 

  56. Menon AS, Radom L (2008) Consequences of spin contamination in unrestricted calculations on open-shell species: effect of Hartree–Fock and Møller–Plesset contributions in hybrid and double-hybrid density functional theory approaches. J Phys Chem A 112:13225–13230. https://doi.org/10.1021/jp803064k

    Article  CAS  PubMed  Google Scholar 

  57. Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:1–4. https://doi.org/10.1103/PhysRevLett.97.216803

    Article  CAS  Google Scholar 

  58. Su J, Telychko M, Hu P et al (2019) Atomically precise bottom-up synthesis of π-extended [5]triangulene. Sci Adv. https://doi.org/10.1126/sciadv.aav7717

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pavliček N, Mistry A, Majzik Z et al (2017) Synthesis and characterization of triangulene. Nat Nanotechnol 12:308–311. https://doi.org/10.1038/nnano.2016.305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agencies Fundação de Apoio à Pesquisa do Estado de São Paulo—FAPESP (17/23416-9), Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (306177/2016-1, 423022/2018-0 and 306585/2019-7) for financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michele A. Salvador or Paula Homem-de-Mello.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvador, M.A., Antonio, F.C.T., da Silva, G.D. et al. On the radicalar properties of graphene fragments: double-hybrid DFT and perturbation theory approaches. Theor Chem Acc 139, 118 (2020). https://doi.org/10.1007/s00214-020-02632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02632-w

Keywords

Navigation