Skip to main content

Graphene Quantum Dots in Various Many-Electron π-Models

  • Conference paper
  • First Online:
Nanooptics, Nanophotonics, Nanostructures, and Their Applications (NANO 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 210))

Included in the following conference series:

Abstract

We make use of various quantum chemistry approaches to understand π-electronic properties of a number of graphene quantum dots (GQDs) and at the same time to clarify the possibilities of fairly simple and feasible models for complex carbon-containing systems. Most of the studied systems turn out to be electronically unstable and requiring a good account for electron correlation. Here we investigate the ground state properties of GQDs in the framework of Löwdin’s extended Hartree-Fock method for π-shells. Additionally, GQD-excited states are modeled by the restricted active space configuration interaction (RAS-CI) method. In particular, it is shown that RAS-CI allows to get reasonable singlet-triplet energy gaps whereas the conventional single CI method gives mostly incorrect results for the same systems. Special focuses are given to aromaticity, effective electron unpairing, and the behavior of graphene networks in strong electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang DE, Chen Z (eds) (2013) Graphene chemistry: theoretical perspectives. Wiley, Puerto Rico

    Google Scholar 

  2. Güçlü AD, Potasz P, Korkusinski M, Hawrylak P (2014) Graphene quantum dots. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  3. Kheirabadi N, Shafiekhani A, Fathipour M (2014) Review on graphene spintronic, new land for discovery. Superlattice Microst 74:123

    Article  ADS  Google Scholar 

  4. Yin PT, Shah S, Chhowalla M, Lee K-B (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483

    Article  Google Scholar 

  5. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744

    Article  Google Scholar 

  6. Luzanov AV (2014) Measures of unpaired electrons for large conjugated systems. J Struct Chem 55:799

    Article  Google Scholar 

  7. Luzanov AV (2014) Effectively unpaired electrons in bipartite lattices within the generalized tight-binding approximation: application to graphene nanoflakes. Funct Mater 21:414

    Article  Google Scholar 

  8. Luzanov AV (2016) Effectively unpaired electrons for singlet states: from diatomics to graphene nanoclusters. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry IV. Springer, Boston, p 151

    Google Scholar 

  9. Luzanov AV (2017) About theoretical peculiarities of lowest excitations in modified nanodiamond color centers. Funct Funct Mater 24:127

    Article  Google Scholar 

  10. Luzanov AV, Plasser F, Das A, Lischka H (2017) Evaluation of the quasi correlated tight-binding (QCTB) model for describing polyradical character in polycyclic hydrocarbons. J Chem Phys 146:064106

    Article  ADS  Google Scholar 

  11. Luzanov AV (2017) Localization of orbitals and electronic properties in nanodiamonds with color centers: semiempirical models. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanomaterials, and applications, Springer proceedings in physics 195. Springer, Cham, p 115

    Chapter  Google Scholar 

  12. Zdetsis AD, Economou EN (2015) A pedestrian approach to the aromaticity of graphene and nanographene: significance of Hückel’s (4n+2)π electron rule. J Phys Chem C 119:16991

    Article  Google Scholar 

  13. Saha B, Bhattacharyya PK (2016) Understanding reactivity, aromaticity and absorption spectra of carbon cluster mimic to graphene: a DFT study. RSC Advance 6:79768

    Article  Google Scholar 

  14. Nishino N, Makino M, Aihara J-i (2016) Aromatic character of irregular-shaped nanographenes. J Phys Chem A 120:2431; Aihara J-i (2016) Graph theory of aromatic stabilization. Bull Chem Soc Jap 89:1425

    Google Scholar 

  15. Luzanov AV (2011) Quantum fidelity for analyzing atoms and fragments in molecule: APPLICATION to similarity, chirality, and aromaticity. Int J Quant Chem 111:2197

    Google Scholar 

  16. Čížek J, Paldus J (1967) Stability conditions for the solutions of the Hartree—Fock equations for atomic and molecular systems. Application to the pi-electron model of cyclic polyenes. J Chem Phys 47:3976

    Article  ADS  Google Scholar 

  17. Helgaker T, Jorgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, New York

    Book  Google Scholar 

  18. Olsen J, Roos BO, Jorgensen P, HJAa J (1988) Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces. J Chem Phys 89:2185

    Article  ADS  Google Scholar 

  19. McWeeny R (1992) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  20. Koutecký J (1967) Unrestricted Hartree—Fock solutions for closed-shell molecules. J Chem Phys 46:2443

    Article  ADS  Google Scholar 

  21. Löwdin P-O (1955) Quantum theory of many-particle systems. III. Extension of the Hartree-Fock scheme to include degenerate systems and correlation effects. Phys Rev 97:1505

    MathSciNet  ADS  Google Scholar 

  22. Mayer I (1980) The spin-projected extended Hartree-Fock method. Adv Quant Chem 12:189

    Article  Google Scholar 

  23. Mestechkin MM, Vaiman GE, Klimo V, Tino J (1983) Extended Hartree-Fock method and its application to molecules [in Russian]. Naukova Dumka, Kiev

    Google Scholar 

  24. Jiménez-Hoyos CA, Henderson TM, Tsuchimochi T, Scuseria GE (2012) Projected Hartree-Fock theory. J Chem Phys 136:164109

    Article  ADS  Google Scholar 

  25. Luzanov AV, Ivanov VV (1991) Configuration interaction of states of the quasi-one-electron type. Theor Exp Chem 26:363

    Article  Google Scholar 

  26. Yan X, Li B, Lim L-S (2013) Colloidal graphene quantum dots with well-defined structures. Acc Chem Res 46:2224

    Google Scholar 

  27. Clar E (1964) Polycyclic hydrocarbons. Academic Press, New York

    Google Scholar 

  28. Bofill JM, Pulay P (1989) The unrestricted natural orbital–complete active space (UNO–CAS) method: an inexpensive alternative to the complete active space–self-consistent-field (CAS–SCF) method. J Chem Phys 90:3637

    Article  ADS  Google Scholar 

  29. Ovchinnikov AA (1978) Multiplicity of the ground state of large alternant organic molecules with conjugated bonds. Theor Chim Acta 47:297

    Article  Google Scholar 

  30. Lieb EH (1989) Two theorems on the Hubbard model. Phys Rev Lett 62:1201

    Article  MathSciNet  ADS  Google Scholar 

  31. Head-Gordon M (2003) Characterizing unpaired electrons from the one-particle density matrix. Chem Phys Lett 372:508

    Article  ADS  Google Scholar 

  32. Feixas F, Matito E, Poater J, Sola M (2015) Quantifying aromaticity with electron delocalisation measures. Chem Soc Rev 44:6434

    Article  Google Scholar 

  33. Nagai H, Nakano M, Yoneda K, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2010) Signature of multiradical character in second hyperpolarizabilities of rectangular graphene nanoflakes. Chem Phys Lett 489:212

    Article  ADS  Google Scholar 

  34. Nakano M, Champagne B (2016) Nonlinear optical properties in open-shell molecular systems. WIREs Comput Mol Sci 6:198

    Article  Google Scholar 

  35. Zakharov AB, Ivanov VV, Adamowicz L (2016) Optical parameters of π-conjugated oligomer chains from the semiempirical local coupled-cluster theory. In: Leszczynski J, Shukla M (eds) Practical aspects of computational chemistry IV. Springer, Boston, p 57

    Google Scholar 

  36. Li H-P, Bi Z-T, Hu R-F, Han K, Li M-X, , Shen X-P, Wu Y-X (2017) Theoretical study on electronic polarizability and second hyperpolarizability of hexagonal graphene quantum dots: effects of size, substituent, and frequency. Carbon 122:756

    Article  Google Scholar 

  37. Pople JA, McIver JW, Ostlund NS (1968) Self-consistent perturbation theory. I. Finite perturbation methods. J Chem Phys 49:2960

    Article  ADS  Google Scholar 

  38. Pedash YF, Ivanov VV, Luzanov AV (1992) π-Electron hyperpolarizability of even-numbered polyenes in the complete configuration interaction method. Theor Exp Chem 28:19

    Article  Google Scholar 

  39. Pedash VF, Luzanov AV (1981) Separation of the local contributions to the transition moments and the polarizability of a molecule in the self-consistent field method. J Struct Chem 21:439

    Article  Google Scholar 

  40. Lazzeretti P, Zanasi R (1984) Resolution of molecular polarizability into atomic terms. Chem Phys Lett 109:89

    Article  ADS  Google Scholar 

  41. Bader RFW (1990) Atoms in molecules – a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  42. Otego N, Aslenoy CV, Pouchan C, Karamais P (2015) Hirshfeld-based intrinsic polarizability density representations as a tool to analyze molecular polarizability. J Comput Chem 36:1831

    Article  Google Scholar 

  43. Chattaraj PK, Sengupta S (1996) Popular electronic structure principles in a dynamical context. J Phys Chem 100:16126

    Article  Google Scholar 

  44. Chattaraj PK, Sarkar U, Roy DR (2007) Electronic structure principles and aromaticity. J Chem Educ 84:354

    Article  Google Scholar 

  45. Santos JC, Contreras M, Merino G (2010) Structure and stability of Si 6 li 6: aromaticity vs polarizability. Chem Phys Lett 496:172

    Article  ADS  Google Scholar 

  46. Luzanov AV (2013) π-system in a strong electric field. Analysis of electron unpairing. J Struct Chem 54:835

    Article  Google Scholar 

  47. Kryachko ES, Ludeña EV (2014) Density functional theory: foundations reviewed. Phys Rep 544:123

    Article  MathSciNet  ADS  Google Scholar 

  48. McWeeny R (1994) Density functions and density functionals. Philos Mag B 69:727

    Article  ADS  Google Scholar 

  49. Kaplan IG (2007) Problems in DFT with the total spin and degenerate states. Int J Quantum Chem 107:2595

    Article  ADS  Google Scholar 

  50. Kaplan IG (2017) The Pauli exclusion principle: origin, verifications and applications. Wiley, Chichester

    MATH  Google Scholar 

  51. Chiappe G, Louis E, San-Fabián E, Vergés AV (2015) Can model Hamiltonians describe the electron-electron interaction in π-conjugated systems? PAH and graphene. J Phys Condens Matter 27:463001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy Luzanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luzanov, A. (2018). Graphene Quantum Dots in Various Many-Electron π-Models. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics, Nanophotonics, Nanostructures, and Their Applications. NANO 2017. Springer Proceedings in Physics, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-91083-3_11

Download citation

Publish with us

Policies and ethics