Skip to main content
Log in

Rate rules for hydrogen abstraction reaction kinetics of polycyclic aromatic hydrocarbons and vinyl radical

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hydrogen abstraction reaction from polycyclic aromatic hydrocarbons (PAHs) is an important reaction class for PAHs consumption and soot formation. In this work, the reaction kinetics for a series of PAHs containing up to seven aromatic rings by vinyl radical are systematically investigated using the M06-2X/cc-pVTZ method. Based on the electronic structure calculations, the rate constants of title reactions are calculated by using transition state theory coupled with Eckart tunneling correction at the temperature range of 500–2500 K. The effects of PAH sizes, structures, and reaction sites on the rate constants are examined. The results show that the PAH sizes and reaction sites have little effect on the rate constants, while the structures of PAHs influence the rate constant significantly. Hence, the hydrogen abstraction reactions are simplified into C5 and C6 reaction classes depending on the abstraction site on the five- or six-membered ring. The simple two classes are conducive to construct the combustion model of PAHs. The reactivity with C6 class possesses the higher activity than the C5 class. Moreover, the difference in rate constants between the two classes is large at low temperatures while the two reaction classes are competitive above 1000 K. The rate rules are summarized by taking the average values of rate constants of a representative set of reactions in each class, which are applicable for the chemical model construction of PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glassman I, Yetter RA, Glumac NG (2015) Combustion. Academic, San Diego

    Google Scholar 

  2. Violi A, D’Anna A, D’Alessio A (1999) Modeling of particulate formation in combustion and pyrolysis. Chem Eng Sci 54:3433–3442

    Article  CAS  Google Scholar 

  3. Raj A, da Silva GR, Chung SH (2012) Reaction mechanism for the free-edge oxidation of soot by O2. Combust Flame 159:3423–3436

    Article  CAS  Google Scholar 

  4. Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Combust Sci 26:565–608

    Article  CAS  Google Scholar 

  5. Kuwana K, Li T, Saito K (2006) Gas-phase reactions during CVD synthesis of carbon nanotubes: insights via numerical experiments. Chem Eng Sci 61:6718–6726

    Article  CAS  Google Scholar 

  6. Saha B, Irle S, Morokuma K (2010) Formation mechanism of polycyclic aromatic hydrocarbons in benzene combustion: quantum chemical molecular dynamics simulations. J Chem Phys 132:224–303

    Google Scholar 

  7. Frenklach M, Wang H (1991) Detailed modeling of soot particle nucleation and growth. Symp Int Combust 23:1559–1566

    Article  Google Scholar 

  8. Johansson KO, Gabaly FEI, Schrader PE, Campbell MF, Michelsen HA (2017) Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame. Aerosol Sci Technol Sci 51:1333–1344

    Article  CAS  Google Scholar 

  9. Frenklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037

    Article  CAS  Google Scholar 

  10. Semenikhin AS, Savchenkova AS, Chechet IV, Matveev SG, Liu Z, Frenklach M, Mebel AM (2017) Rate constants for H abstraction from benzo(a)pyrene and chrysene: a theoretical study. Phys Chem Chem Phys 19:25401–25413

    Article  PubMed  CAS  Google Scholar 

  11. Mai TVT, Ratkiewicz A, Le A, Duong M, Truong TN, Huynh LK (2018) On-the-fly kinetics of hydrogen abstraction from polycyclic aromatic hydrocarbons by methyl/ethyl radicals. Phys Chem Chem Phys 20:23578–23592

    Article  PubMed  CAS  Google Scholar 

  12. Baradyn M, Ratkiewicz A (2019) Kinetics of the hydrogen abstraction PAH + ·OH → PAH radical + H2O reaction class: an application of the reaction class transition state theory (RC-TST) and structure–activity relationship (SAR). J Phys Chem A 123:750–763

    Article  PubMed  CAS  Google Scholar 

  13. Hou DY, You XQ (2017) Reaction kinetics of hydrogen abstraction from polycyclic aromatic hydrocarbons by H atoms. Phys Chem Chem Phys 19:30772–30780

    Article  PubMed  CAS  Google Scholar 

  14. Frenklach M, Liu Z, Singh RI, Galimova GR, Azyazov VN, Mebel AM (2018) Detailed, sterically-resolved modeling of soot oxidation: role of O atoms, interplay with particle nanostructure, and emergence of inner particle burning. Combust Flame 188:284–306

    Article  CAS  Google Scholar 

  15. Battin-Leclerc F, Curran H, Faravelli T, Glaude PA (2013) Specificities related to detailed kinetic models for the combustion of oxygenated fuels components. In: Battin-Leclerc F, Simmie J, Blurock E (eds) Cleaner Combustion. Green Energy and Technology, Springer, London

  16. Tokmakov IV, Lin MC (2004) Combined quantum chemical/RRKM-ME computational study of the phenyl + ethylene, vinyl + benzene, and H + styrene reactions. J Phys Chem A 108:9697–9714

    Article  CAS  Google Scholar 

  17. Bensabath T, Monnier H, Glaude PA (2016) Detailed kinetic modeling of the formation of toxic polycyclic aromatic hydrocarbons (PAHs) coming from pyrolysis in low-pressure gas carburizing conditions. J Anal Appl Pyrol 122:342–354

    Article  CAS  Google Scholar 

  18. Norinaga K, Deutschmann O, Saegusa N, Hayashi JI (2009) Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. J Anal Appl Pyrol 86:148–160

    Article  CAS  Google Scholar 

  19. Buras ZJ, Chu TC, Jamal A, Yee NW, Middaugh JE, Green WH (2018) Phenyl radical + propene: a prototypical reaction surface for aromatic-catalyzed 1,2-hydrogen-migration and subsequent resonance-stabilized radical formation. Phys Chem Chem Phys 20:13191–13214

    Article  PubMed  CAS  Google Scholar 

  20. Whitesides R, Frenklach M (2010) Detailed kinetic Monte Carlo simulations of graphene-edge growth. J Phys Chem A 114:689–703

    Article  PubMed  CAS  Google Scholar 

  21. Whitesides R, Frenklach M (2015) Effect of reaction kinetics on graphene-edge morphology and composition. Z Phys Chem 229:597–614

    Article  CAS  Google Scholar 

  22. Colket M, Edwards T, Williams S, Cernansky NP, Miller DL, Egolfopoulos F, Lindstedt P, Seshadri K, Dryer FL, Law CK, Friend D, Lenhert DB, Pitsch H, Sarofim A, Smooke M, Tsang W (2007) Development of an experimental database and kinetic models for surrogate jet fuels. AIAA J 770

  23. Frenklach M, Clary DW, Gardiner WC, Stein SE (1985) Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. In: Symposium (international) on combustion, vol 20, pp 887–901

  24. Miller JA, Klippenstein SJ, Robertson SH (2000) A theoretical analysis of the reaction between vinyl and acetylene: quantum chemistry and solution of the master equation. J Phys Chem 104:7525–7536

    Article  CAS  Google Scholar 

  25. Striebel F, Jusinski LE, Fahr A, Halpern J, Klippenstein S, Taatjes CA (2004) Kinetics of the reaction of vinyl radicals with NO: ab initio theory, master equation predictions, and laser absorption measurements. Phys Chem Chem Phys 6:2216–2223

    Article  CAS  Google Scholar 

  26. Lifshitz A, Tamburu C, Dubnikova F (2008) Reactions of 1-naphthyl radicals with ethylene. Single pulse shock tube experiments, quantum chemical, transition state theory, and multiwell calculations. J Phys Chem A 112:925–933

    Article  PubMed  CAS  Google Scholar 

  27. Truhlar DG (1998) Basis-set extrapolation. Chem Phys Lett 294:45–48

    Article  CAS  Google Scholar 

  28. Halkier A, Helgaker T, Jørgensen P, Klopper W, Olsen J (1999) Basis-set convergence of the energy in molecular Hartree–Fock calculations. Chem Phys Lett 302:437–446

    Article  CAS  Google Scholar 

  29. De Lara-Castells MP, Krems RV, Buchachenko AA, Delgado-Barrio G, Villarreal P (2001) Complete basis set extrapolation limit for electronic structure calculations: energetic and nonenergetic properties of HeBr and HeBr 2 van der Waals dimmers. J Chem Phys 115:10438–10449

    Article  CAS  Google Scholar 

  30. Huh SB, Lee JS (2003) Basis set and correlation dependent extrapolation of correlation energy. J Chem Phys 118:3035–3042

    Article  CAS  Google Scholar 

  31. Villano SM, Huynh LK, Caestensen HH, Dean AM (2011) High-pressure rate rules for alkyl + O2 reactions. 1. The dissociation, concerted elimination, and isomerization channels of the alkyl peroxy radical. J Phys Chem A 115:13425–13442

    Article  PubMed  CAS  Google Scholar 

  32. Villano SM, Huynh LK, Caestensen HH, Dean AM (2012) High-pressure rate rules for alkyl + O2 reactions. 2. The isomerization, cyclic ether formation, and β-scission reactions of hydroperoxy alkyl radicals. J Phys Chem A 116:5068–5089

    Article  PubMed  CAS  Google Scholar 

  33. Miyoshi A (2011) Systematic computational study on the unimolecular reactions of alkylperoxy (RO2), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O2QOOH) radicals. J Phys Chem A 115:3301–3325

    Article  PubMed  CAS  Google Scholar 

  34. Yao Q, Sun XH, Li ZR, Chen FF, Li XY (2017) Pressure-dependent rate rules for intramolecular H-migration reactions of hydroperoxyalkylperoxy radicals in low temperature. J Phys Chem A 121:3001–3018

    Article  PubMed  CAS  Google Scholar 

  35. Sun XH, Zong WG, Wang JB, Li ZR, Li XY (2019) Pressure-dependent rate rules for cycloaddition, intramolecular H-shift, and concerted elimination reactions of alkenyl peroxy radicals at low temperature. Phys Chem Chem Phys 21:10693–10705

    Article  PubMed  CAS  Google Scholar 

  36. Sun XH, Zong WG, Li ZR, Li XY (2019) Pressure-dependent rate rules for the intramolecular H-shift reactions of hydroperoxy-alkenyl-peroxy radicals in low temperature. Energy Fuels 33:5597–5609

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr JAM, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A. I, Gaussian, Wallingford CT, USA

  38. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    Article  PubMed  CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  40. Hemelsoet K, Speybroeck VV, Waroquier M (2008) A DFT-based investigation of hydrogen abstraction reactions from methylated polycyclic aromatic hydrocarbons. Chem Phys Chem 9:2349–2358

    Article  PubMed  CAS  Google Scholar 

  41. Kashinski DO, Chase GM, Nelson RG, Nallo OEDI, Scales AN, VanderLey DL, Byrd EFC (2017) Harmonic vibrational frequencies: approximate global scaling factors for TPSS, M06, and M11 functional families using several common basis sets. J Phys Chem A 121:2265–2273

    Article  PubMed  CAS  Google Scholar 

  42. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  43. Yu HY, Truhlar DG (2014) What dominates the error in the CaO diatomic bond energy predicted by various approximate exchange-correlation functionals. J Chem Theory Comput 10:2291–2305

    Article  PubMed  CAS  Google Scholar 

  44. Alecu IM, Truhlar DG (2011) Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 1. Accurate thermochemistry and barrier heights. J Phys Chem A 115:2811–2829

    Article  PubMed  CAS  Google Scholar 

  45. Rienstra-Kiracofe JC, Allen WD, Schaefer HF (2000) The C2H5 + O2 reaction mechanism: high-level ab initio characterizations. J Phys Chem A 104:9823–9840

    Article  CAS  Google Scholar 

  46. Peiro-Garcia J, Nebot-Gil I (2003) Ab initio study of the mechanism of the atmospheric reaction: NO2 + O3 → NO3 + O2. J Comput Chem 24:1657–1663

    Article  PubMed  CAS  Google Scholar 

  47. Canneaux S, Bohr F, Henon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35:82–93

    Article  PubMed  CAS  Google Scholar 

  48. Pollak E, Pechukas P (1978) Symmetry numbers, not statistical factors, should be used in absolute rate theory and in bronsted relations. J Am Chem Soc 100:2984–2991

    Article  CAS  Google Scholar 

  49. Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  50. Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical eckart potential energy barriers. J Phys Chem 66:532–533

    Article  Google Scholar 

  51. Wang QD, Zhang WD (2015) Influence of the double bond on the hydrogen abstraction reactions of methyl esters with hydrogen radical: an Ab initio and chemical kinetic study. RSC Adv 5:68314–68325

    Article  CAS  Google Scholar 

  52. Sirjean B, Dames E, Wang H, Tsang W (2012) Tunneling in hydrogen-transfer isomerization of n-alkyl radicals. J Phys Chem A 116:319–332

    Article  PubMed  CAS  Google Scholar 

  53. McClurg RB, Flagan RC, Goddard WA (1997) The hindered rotor density-of-states interpolation function. J Chem Phys 106:6675–6680

    Article  CAS  Google Scholar 

  54. Hemelsoet K, Van Speybroeck V, Moran D, Marin GB, Radom L, Waroquier M (2006) Thermochemistry and kinetics of hydrogen abstraction by methyl radical from polycyclic aromatic hydrocarbons. J Phys Chem A 110:13624–13631

    Article  PubMed  CAS  Google Scholar 

  55. Yao XX, Wang JB, Yao Q, Li YQ, Li ZR, Li XY (2019) Pressure-dependent rate rules for intramolecular H-migration reactions of normal-alkyl cyclohexylperoxy radicals. Combust Flame 204:176–188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91641120, 91741201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Bo Wang.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, XM., Li, ZR., Wang, JB. et al. Rate rules for hydrogen abstraction reaction kinetics of polycyclic aromatic hydrocarbons and vinyl radical. Theor Chem Acc 139, 94 (2020). https://doi.org/10.1007/s00214-020-02612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02612-0

Keywords

Navigation