Skip to main content
Log in

Theoretical study of hydrogen abstraction by small radicals from cyclohexane-carbonyl-hydroperoxide

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hydrogen abstraction from carbonyl-hydroperoxide is a new reaction class in the low-temperature oxidation of hydrocarbons. In this work, a comprehensive study to the kinetics for the hydrogen abstraction from cyclohexane-carbonyl-hydroperoxide (CCHP) is investigated using the CBS-QB3 composite method. Five small active radicals (H, CH3, O (3P), OH and HO2) are selected as the extracting agents, and the corresponding barrier heights are computed. Guided by the reaction barriers, the preferable path on hydrogen abstraction from CCHP is identified. The two-transition-state model is employed to obtain the overall rate constant when HO2 and OH act as the extracting agents due to the formation of reactant and product complexes. High-pressure-limit rate constants for 25 elementary reactions are reported in the modified Arrhenius form. Branching ratios for the site-specific hydrogen abstraction reactions ranging from 300 to 2500 K are illustrated to show the temperature dependence of preferable path. Compared with the theoretical rate constants obtained in this work, the values estimated by using analogy rules have obvious deviations at low temperature. The obtained hydrogen abstraction reactions are added to the JetSurF2.0 mechanism, thereby improving its kinetic modeling results for cyclohexane oxidation. Present work provides accurate kinetic parameters for this new type of reaction class which can be helpful to improve the predictive capability for hydrocarbon mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Herbinet O, Battin-Leclerc F, Bax S, Gall HL, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F (2011) Phys Chem Chem Phys 13(1):296

    Article  CAS  Google Scholar 

  2. Herbinet O, Husson B, Serinyel Z, Cord M, Warth V, Fournet R, Glaude PA, Sirjean B, Battin-Leclerc F, Wang Z, Xie M, Cheng Z, Qi F (2012) Combust Flame 159(12):3455

    Article  CAS  Google Scholar 

  3. Ranzi E, Cavallotti C, Cuoci A, Frassoldati A, Pelucchi M, Faravelli T (2015) Combust Flame 162(5):1679

    Article  CAS  Google Scholar 

  4. Pelucchi M, Bissoli M, Cavallotti C, Cuoci A, Faravelli T, Frassoldati A, Ranzi E, Stagni A (2014) Energy Fuels 28(11):7178

    Article  CAS  Google Scholar 

  5. Zhou CW, Li Y, O’Connor E, Somers KP, Thion S, Keesee C, Mathieu O, Petersen EL, DeVerter TA, Oehlschlaeger MA, Kukkadapu G, Sung C-J, Alrefae M, Khaled F, Farooq A, Dirrenberger P, Glaude PA, Battin-Leclerc F, Santner J, Ju Y, Held T, Haas FM, Dryer FL, Curran HJ (2016) Combust Flame 167:353

    Article  CAS  Google Scholar 

  6. Sirjean B, Glaude PA, Ruiz-Lòpez MF, Fournet R (2009) J Phys Chem A 113(25):6924

    Article  CAS  Google Scholar 

  7. Burke S, Burke U, Donagh R, Mathieu O, Osorio I, Keesee C, Morones A, Petersen E, Wang W, DeVerter T, Oehlschlaeger M, Rhodes B, Hanson RK, Davidson D, Weber B, Sung C-J, Santner J, Ju Y, Haas F, Curran HJ (2015) Combust Flame 162(2):296

    Article  CAS  Google Scholar 

  8. Keromnes A, Metcalfe W, Heufer A, Donohoe N, Das A, Sung C-J, Herzler J, Naumann C, Griebel P, Mathieu O, Krejci M, Petersen E, Pitz W, Curran HJ (2013) Combust Flame 160(6):995

    Article  CAS  Google Scholar 

  9. Franklin Goldsmith C, Green W, Klippenstein S (2012) J Phys Chem A 116(13):3325

    Article  Google Scholar 

  10. Xing L, Zhang L, Zhang F, Jiang J (2017) Combust Flame 182:216

    Article  CAS  Google Scholar 

  11. Antonov I, Zádor J, Rotavera B, Papajak E, Osborn D, Taatjes C, Sheps L (2016) J Phys Chem A 120(33):6582

    Article  CAS  Google Scholar 

  12. Ranzi E, Dente M, Faravelli T, Pennati G (1993) Combust Sci Technol 95:1

    Article  Google Scholar 

  13. Rossi M (2017) Atmos Chem Phys 13(15):7359

    Google Scholar 

  14. Silke EJ, Pitz WJ, Westbrook CK, Ribaucour M (2007) J Phys Chem A 111(19):3761

    Article  CAS  Google Scholar 

  15. Bakali AE, Braun-Unkhoff M, Dagaut P, Frank P, Cathonnet M (2000) Proc Combust Inst 28(2):1631

    Article  Google Scholar 

  16. Serinyel Z, Herbinet O, Frottier O, Dirrenberger P, Warth V, Glaude PA, Battin-Leclerc F (2013) Combust Flame 160(11):2319

    Article  CAS  Google Scholar 

  17. Knepp AM, Meloni G, Jusinski LE, Taatjes CA, Cavallotti C, Klippenstein SJ (2007) Phys Chem Chem Phys 9(31):4315

    Article  CAS  Google Scholar 

  18. B Sirjean, E Dames, DA Sheen, FN Egolfopoulos, H.Wang, DF Davidson, RK Hanson, H Pitsch, CT Bowman, CK Law, W Tsang, NP Cernan-sky, DL Miller, A Violi, RP Lindstedt (2010) JetSurF version2.0, Septem-ber19, http://melchior.usc.edu/JetSurF/JetSurF2.0

  19. Montgomery J, Frisch M, Ochterski J, Petersson GA (1999) J Chem Phys 110(6):2822

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,Cheeseman JR, Scalmani G, Barone V, Mennucci B, PeterssonGA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF,Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, KitaoO, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, OgliaroF, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, GompertsR, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkaso, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 Revision B.01. Gaussian Inc, Wallingford

  21. Sirjean B, Glaude PA, Ruiz-Lopez M (2006) J Phys Chem A 110(46):12693

    Article  CAS  Google Scholar 

  22. Sirjean B, Fournet R (2012) J Phys Chem A 116(25):6675

    Article  CAS  Google Scholar 

  23. Altarawneh M, Dlugogorski B, Kennedy E, Mackie J (2013) Combust Flame 160(1):9

    Article  CAS  Google Scholar 

  24. Ning H, Gong C, Tan N, Li Z, Li X (2015) Combust Flame 162(11):4167

    Article  CAS  Google Scholar 

  25. Gonzalez C, Bernhard Schlegel H (1989) J Chem Phys 90(90):2154

    Article  CAS  Google Scholar 

  26. Curtiss LA, Raghavachari K, Redfern P, Pople JA (1997) J Chem Phys 106(3):1063–1079

    Article  CAS  Google Scholar 

  27. Mokrushin V, Tsang W (2009) ChemRate v158, National Institue of Standards and Technology: Gaithersburg M 2009, Chemrate 2009

  28. Johnston HS, Heicklen J (1962) J Phys Chem 66(3):532

    Article  Google Scholar 

  29. Tardy DC, Rabinovitch BS (1977) Chem Rev 77(3):369

    Article  CAS  Google Scholar 

  30. Wang H, Frenklach M (1994) Combust Flame 96(1–2):163

    Article  CAS  Google Scholar 

  31. Pechukas P (1981) Annu Rev Phys Chem 32(32):59

    Google Scholar 

  32. Tan T, Yang X, Ju Y, Carter A (2016) Phys Chem Chem Phys 18(6):4594

    Article  CAS  Google Scholar 

  33. Li SH, Guo JJ, Li R, Wang F, Li XY (2016) J Phys Chem A 120(20):3424

    Article  CAS  Google Scholar 

  34. Tan T, Pavone M, Krisiloff D, Carter A (2012) J Phys Chem A 116(33):8431

    Article  CAS  Google Scholar 

  35. Jj W, Khaled F, Hong-Bo N, Ma L, Farooq A, Ren W (2017) J Phys Chem A 121(33):6304

    Article  Google Scholar 

  36. Shannon RJ, Taylor S, Goddard A, Blitz M, Heard D (2010) Phys Chem Chem Phys 12(41):13511

    Article  CAS  Google Scholar 

  37. Greenwald E, North S, Georgievskii Y, Klippenstein JS (2007) J Phys Chem A 111(25):5582

    Article  CAS  Google Scholar 

  38. Klippenstein J (1992) J Chem Phys 96(7):5558

    Article  Google Scholar 

  39. Klippenstein J (1994) J Phys Chem 98(44):11459

    Article  CAS  Google Scholar 

  40. Curran HJ, Gaffuri P, Pitz W, Westbrook CK (2002) Combust Flame 129(3):253

    Article  CAS  Google Scholar 

  41. CHEMKIN-PRO 15092 Reaction Design: San Diego 2009

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Nos. 91741201, 91641120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Bo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 157 kb)

Supplementary material 2 (TXT 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Wang, JB. & Li, XY. Theoretical study of hydrogen abstraction by small radicals from cyclohexane-carbonyl-hydroperoxide. Theor Chem Acc 138, 39 (2019). https://doi.org/10.1007/s00214-019-2426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2426-1

Keywords

Navigation