Skip to main content
Log in

New benzene dimers: an MRMP2 study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction energies of one cis-fused and four new trans-fused benzene dimers have been studied with state-specific multi-reference Møller-Plesset perturbation theory of the second order (MRMP2) based on reference CASSCF(12,12) wavefunctions. The cis-fused dimer 1, the product of symmetry-allowed [4 + 2] cycloaddition process, has been previously characterized experimentally and theoretically and, in this study, was used as reference. Dimer 1 lies 45 kcal/mol above two isolated benzene molecules, and its retro-dimerization activation energy is ~ 8 kcal/mol. In contrast, the [4 + 2] formation of trans-fused dimer 2 is symmetry-forbidden with an energetic driving force (Erel) of 57.6 kcal/mol. An activation barrier for corresponding retro-dimerization calculated to be 31.0 kcal/mol. The thermal [2 + 2] formation of dimers 3 and 4 are also symmetry-forbidden. They have been calculated to be 79.0 kcal/mol and 105.1 kcal/mol higher in energy than two isolated benzene molecules, respectively. However, the activation energies of 23.2 and 20.5 kcal/mol could allow for kinetic persistence of these compounds. Dimer 5 is the only symmetry-allowed [2 + 2] cycloaddition product. With Erel of 67.5 kcal/mol and Ea for retro-dimerization reaction of 19.2 kcal/mol, it shows high similarity with the symmetry-forbidden dimers. The wave function for each of the dimers at their local minimum geometry contains greater than 80% of the configuration \(\sigma^{4} \pi^{8} \sigma^{*0} \pi^{*0}\). The transition state for the retro-dimerization of 1 (1TS) also contains more than 80% of the closed-shell configuration \(\sigma^{4} \pi^{8} \sigma^{*0} \pi^{*0}\). For 2TS5TS systems, the wavefunctions exhibit significant biradical character (20%, 20%, 14% and 26%, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Theoretical work on hexaprismane and p,p'-dibenzene.

  2. Theoretical work on o,o':p,p'-dibenzene also discussed in Ref. 3(c) and 3(d).

  3. Experimental observation of o,o':p,p'-dibenzene.

  4. Experimental observations of o,o':o,p'-dibenzene.

  5. Possible derivatives of o,p':p,o'-dibenzene.

  6. Theoretical works on anti-o,o'-dibenzene and syn-o,o'-dibenzene. See also references 3(b) and 3(c)

  7. Experimental works on anti-o,o'-dibenzene and syn-o,o'-dibenzene.

  8. Theoretical works on dimer 1. See also references 3(c), 3(d) and 13.

  9. Experimental works on dimer 1.

  10. Throughout this work, we have used the “heavy dot” notation for H-atoms above the ring plane. As explained in [13], this notation has great utility for describing a large array of benzene dimers differing in stereochemistry just by the placement of the protons. We are aware that this notation is “strongly deprecated” by IUPAC.

  11. The notations [2+2] and [4+2] correspond to the well-known pericyclic nomenclature. Throughout this work, the use of 's' and 'a' subscripts are also derived from the pericyclic reaction nomenclature.

References

  1. Woodward, R. B., Hoffmann, R., Angew. Chem., Int. Ed.1969, 8, 781.

  2. Diels O, Alder K (1928) Justus Liebigs Ann Chem 460:98

    Article  CAS  Google Scholar 

  3. Engelke R, Hay PJ, Kleier DA, Wadt WR (1983) J Chem Phys 79:4367

    Article  CAS  Google Scholar 

  4. Engelke R, Hay PJ, Kleier DA, Wadt WR (1984) J Am Chem Soc 106:5439

    Article  CAS  Google Scholar 

  5. Schriver GW, Gerson DJ (1990) J Am Chem Soc 112:4723

    Article  CAS  Google Scholar 

  6. Wang Y, Li Z, Wang F, Sun C (2009) Phys Chem Chem Phys 11:455

    Article  CAS  Google Scholar 

  7. Yang NC, Horner MG (1986) Tetrahedron Lett 27:543

    Article  CAS  Google Scholar 

  8. Martin, H.-D., Pfohler, P., Angew. Chem., Int. Ed.,1978, 17, 847

  9. Martin H-D, Pfohler P, Urbanek T, Walsh R (1983) Chem Ber 116:1415

    Article  CAS  Google Scholar 

  10. Kostermans GBM, van Dansink P, de Wolf WH, Bickelhaupt F (1987) J Am Chem Soc 109:7887

    Article  CAS  Google Scholar 

  11. Cometta-Morini C, Baumann H, Oth JFM (1992) J Mol Struct (Theochem) 277:15

    Article  Google Scholar 

  12. Cometta-Morini C, Baumann H, Oth JFM (1992) J Mol Struct (Theochem) 277:31

    Article  Google Scholar 

  13. Röttele H, Martin W, Oth JFM, Schröder G (1969) Chem Ber 102:3985

    Article  Google Scholar 

  14. Berson JA, Davis RF (1972) J Am Chem Soc 94:3658

    Article  CAS  Google Scholar 

  15. Yang NC, Hrnjez BJ, Horner MG (1987) J Am Chem Soc 109:3158

    Article  CAS  Google Scholar 

  16. Noh, T., Gan, H., Halfon, S., Hrnjez, B. J., Yang, N. C., J. Am. Chem., Soc.1997, 119, 7470

  17. Schroeter K, Schröder D, Schwarz H, Reddy GD, Wiest O, Carra C, Bally T (2000) Chem Eur J 6:4422

    Article  CAS  Google Scholar 

  18. Engelke R (1986) J Am Chem Soc 108:5799

    Article  CAS  Google Scholar 

  19. Quenneville J, Germann TC (2009) J Chem Phys 131:024313

    Article  Google Scholar 

  20. Braun R, Kummer M, Martin H-D, Rubin MB (1985) Angew Chem Int Ed 24:1059

    Article  Google Scholar 

  21. Bertsch A, Grimme W, Reinhardt G (1986) Angew Chem Int Ed 25:377

    Article  Google Scholar 

  22. Moss GP (1996) Pure Appl Chem 68:2193

    Article  CAS  Google Scholar 

  23. Rogachev AYu, Wen X-D, Hoffmann R (2012) J Am Chem Soc 134:8062

    Article  CAS  Google Scholar 

  24. Hirao K (1992) Chem Phys Lett 190:374

    Article  CAS  Google Scholar 

  25. Hirao K (1992) Chem Phys Lett 196:397

    Article  CAS  Google Scholar 

  26. Hirao, K., Int. J. Quant. Chem.,1992, S 26, 517

  27. Hirao K (1993) Chem Phys Lett 201:59

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  30. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  31. Neese, F., The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73.

  32. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  33. Neese F, Wennmohs F, Hansen A, Becker U (2009) Chem Phys 356:98

    Article  CAS  Google Scholar 

  34. Granovsky, A. A., Firefly version 8.0.1, https://classic.chem.msu.su/gran/firefly/index.html

  35. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., 36. 36. Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., Montgomery, J. A., J. Comput. Chem., 1993, 14, 1347.

  36. Granovsky AA (2011) J Chem Phys 134:214113

    Article  Google Scholar 

  37. Nakano H (1993) J Chem Phys 99:7983

    Article  CAS  Google Scholar 

  38. Rintelman JM, Adamovic I, Varganov S, Gordon MS (2005) J Chem Phys 122:44105

    Article  Google Scholar 

  39. Bofill JM, Pulay P (1989) J Chem Phys 90:3637

    Article  CAS  Google Scholar 

  40. Pulay P, Hamilton TP (1988) J Chem Phys 88:4926

    Article  CAS  Google Scholar 

  41. Bone RGA, Pulay P (1992) Int J Quant Chem 45:133

    Article  Google Scholar 

  42. Wiberg, K. B., Cyclobutane – Physical Properties and Theoretical Studies. In The Chemistry of Cyclobutanes. Ed. by Rappoport, Z., Liebman, J. F., John Wiley & Sons, Ltd, Chichester, UK, 2006.

  43. Bernardi F, Bottoni A, Robb MA, Venturini A (1990) J Am Chem Soc 112:2106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Illinois Institute of Technology (start-up funds, A.Yu.R) and partial support from the Wanger Institute for Sustainable Energy Research (WISER) Seed Grant (A.Yu.R) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Rogachev.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 16307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNeely, J., Rogachev, A.Y. New benzene dimers: an MRMP2 study. Theor Chem Acc 139, 87 (2020). https://doi.org/10.1007/s00214-020-02598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02598-9

Navigation