Skip to main content
Log in

Coupled cluster spectroscopic properties of the coinage metal nitrosyls, M–NO (M = Cu, Ag, Au)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Ab initio near-equilibrium potential energy and dipole moment surfaces for the bent CuNO, AgNO, and AuNO molecules have been calculated under the Feller–Peterson–Dixon (FPD) composite framework at the coupled cluster level of theory including complete basis set extrapolation, outer-core correlation, scalar relativistic effects, and spin–orbit coupling. The Brueckner coupled cluster doubles with perturbative triples method, BCCD(T), was used to greatly improve upon CCSD(T), which was particularly problematic for CuNO. In the latter case, the BCCD(T) vibrational frequencies showed significant differences compared to CCSD(T), e.g., nearly 65 cm−1 for the NO stretching frequency, and BCCD(T) also resulted in much better agreement with the available experimental frequencies. A full range of ro-vibrational spectroscopic constants are given for all three molecules of this study using the accurate composite potential energy functions and employing second-order vibrational perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews L, Citra A (2002) Chem Rev 102:885–912

    Article  CAS  PubMed  Google Scholar 

  2. Pietrzyk P, Piskorz W, Sojka Z, Broclawik E (2003) J Phys Chem B 107:6105–6113

    Article  CAS  Google Scholar 

  3. Pietrzyk P, Sojka Z (2005) J Phys Chem A 109:10571–10581

    Article  CAS  PubMed  Google Scholar 

  4. Sulzle D, Schwarz H, Moock KH, Terlouw JK (1991) Int J Mass Spectrom 108:269–272

    Article  Google Scholar 

  5. Krim L, Wang XF, Manceron L, Andrews L (2005) J Phys Chem A 109:10264–10272

    Article  CAS  PubMed  Google Scholar 

  6. Chiarelli JA, Ball DW (1994) J Phys Chem 98:12828–12830

    Article  CAS  Google Scholar 

  7. Jiang L, Xu Q (2007) J Phys Chem A 111:2690–2696

    Article  CAS  PubMed  Google Scholar 

  8. Zhou M, Andrews L (2000) J Phys Chem A 104:2618

    Article  CAS  Google Scholar 

  9. Ball DW, Chiarelli JA (1995) J Mol Struct 372:113–125

    CAS  Google Scholar 

  10. Ruschel GK, Nemetz TM, Ball DW (1996) J Mol Struct 384:101–114

    Article  CAS  Google Scholar 

  11. Hrušák J, Koch W, Schwarz H (1994) J Chem Phys 101:3898–3905

    Article  Google Scholar 

  12. Uzunova EL (2009) J Phys Chem A 113:11266–11272

    Article  CAS  PubMed  Google Scholar 

  13. Krishna BM and Marquardt R (2012) J Chem Phys 136:

  14. Blanchet C, Duarte HA, Salahub DR (1997) J Chem Phys 106:8778–8787

    Article  CAS  Google Scholar 

  15. Cornaton Y, Krishna BM, Marquardt R (2013) Mol Phys 111:2263–2282

    Article  CAS  Google Scholar 

  16. Citra A, Andrews L (2001) J Phys Chem A 105:3042–3051

    Article  CAS  Google Scholar 

  17. Chao C-C, Lunsford JH (1974) J Phys Chem 78:1174–1177

    Article  CAS  Google Scholar 

  18. Tielens F, Gracia L, Polo V, Andres J (2007) J Phys Chem A 111:13255–13263

    Article  CAS  PubMed  Google Scholar 

  19. Jiang L, Kohyama M, Haruta M, Xu Q (2008) J Phys Chem A 112:13495–13499

    Article  CAS  PubMed  Google Scholar 

  20. Teng YL, Kohyama M, Haruta M, and Xu Q (2009) J Chem Phys 130:

  21. Kuang XJ, Wang XQ, Liu GB (2011) Eur Phys J D 61:71–80

    Article  CAS  Google Scholar 

  22. Olvera-Neria O, Bertin V, Poulain E (2011) Int J Quantum Chem 111:2054–2063

    Article  CAS  Google Scholar 

  23. Citra A, Wang XF, Andrews L (2002) J Phys Chem A 106:3287–3293

    Article  Google Scholar 

  24. Feller D, Peterson KA, and Dixon DA (2008) J Chem Phys 129:

  25. Hampel C, Peterson KA, Werner HJ (1992) Chem Phys Lett 190:1–12

    Article  CAS  Google Scholar 

  26. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  27. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  28. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283–296

    Article  CAS  Google Scholar 

  29. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227–244

    Article  CAS  Google Scholar 

  30. Dykstra CE (1977) Chem Phys Lett 45:466–469

    Article  CAS  Google Scholar 

  31. Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185–192

    Article  CAS  Google Scholar 

  32. Noga J, Bartlett RJ (1987) J Chem Phys 86:7041

    Article  CAS  Google Scholar 

  33. Scuseria GE, Schaefer HF (1988) Chem Phys Lett 152:382

    Article  CAS  Google Scholar 

  34. Lee TJ and Taylor PR (1989) Int. J. Quantum Chem. 36(Suppl. S23):199

  35. Karton A, Martin JML (2006) Theor Chem Acc 115:330–333

    Article  CAS  Google Scholar 

  36. Feller D, Peterson KA, and Hill JG (2011) J Chem Phys 135:

  37. Martin JML (1996) Chem Phys Lett 259:669–678

    Article  CAS  Google Scholar 

  38. Douglas M, Kroll NM (1974) Ann Phys (New York) 82:89–155

    Article  CAS  Google Scholar 

  39. Jansen G, Hess BA (1989) Phys Rev A 39:6016–6017

    Article  CAS  Google Scholar 

  40. Reiher M, Wolf A (2004) J Chem Phys 121:10945–10956

    Article  CAS  PubMed  Google Scholar 

  41. de Jong WA, Harrison RJ, and Dixon DA (2001) J Chem Phys 114:48–53

  42. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  43. Lee YS, Ermler WC, Pitzer KS (1977) J Chem Phys 67:5861–5875

    Article  CAS  Google Scholar 

  44. Carter S, Handy NC (1987) J Chem Phys 87:4294

    Article  CAS  Google Scholar 

  45. Hoy AR, Mills IM, Strey G (1972) Mol Phys 24:1265

    Article  CAS  Google Scholar 

  46. Senekowitsch J, Ph.D. thesis, Universität Frankfurt, Frankfurt,Germany, 1988.

  47. Eckart C (1935) Phys Rev 47:552

    Article  CAS  Google Scholar 

  48. Adler-Golden SM, Carney GD (1985) Chem Phys Lett 113:582–584

    Article  CAS  Google Scholar 

  49. Saue T, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC18 (2018), written by T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, with contributions from V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, E. D. Hedegård, T. Helgaker, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K. Lærdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J. M. H. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P. Sałek, B. Schimmelpfennig, A. Shee, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (available at https://doi.org/10.5281/zenodo.2253986, see also http://www.diracprogram.org).

  50. Werner H-J (2019) MOLPRO, version 2019.2, a package of ab initio programs, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and M. Welborn, , see https://www.molpro.net.

Download references

Acknowledgements

The authors gratefully acknowledge the support of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry Program through Award Number DE-SC0008501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk A. Peterson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

"Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho & Francisco Bolivar Correto Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Peterson, K.A. Coupled cluster spectroscopic properties of the coinage metal nitrosyls, M–NO (M = Cu, Ag, Au). Theor Chem Acc 139, 81 (2020). https://doi.org/10.1007/s00214-020-02597-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02597-w

Keywods

Navigation