Skip to main content
Log in

Theoretical investigation on the substituent effects of the C–H/π interaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The substituent effects of C–H/π non-covalent interactions between the C–H bond of alkane/alkene/alkyne/alkane halide and π orbitals of aromatic compounds were studied using the theoretical calculation methods at the CCSD(T)/aug-cc-pvdz level. The natural bond orbital (NBO) analysis implies the charge transfer from the π-system to the C–H bond in the C–H/π interaction. Therefore, either electron-donating group on the π-system or the electron-withdrawing group on the C–H system could enhance the C–H/π interaction. Meanwhile, the substituent effect of the π-system is weaker than that of the C–H systems. There is a good linear correlation between the stabilization energy (energy difference between the C–H/π complex and the separated reactants) and the reaction enthalpy (for the formation of the C–H/π complex) of the alkane/alkene/alkyne-aromatic systems. For the C–H/π interactions between two aromatic systems, good linear correlations were observed between the σp (C–H/π bond pair substituent constant) and the stabilization energy or the r(CH…η), i.e., the distance from H atom to the center of benzene ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kodama Y, Nishihata K, Nishio M, Nakagawa N (1977) Attractive interaction between aliphatic and aromatic systems. Tetrahedron Lett 18:2105–2108

    Article  Google Scholar 

  2. Grabowski SJ (2011) What is the covalency of hydrogen bonding? Chem Rev 111:2597–2625

    Article  CAS  PubMed  Google Scholar 

  3. Tsuzuki S, Fujii A (2008) Nature and physical origin of CH/π interaction: significant difference from conventional hydrogen bonds. Phys Chem Chem Phys 10:2584–2594

    Article  CAS  PubMed  Google Scholar 

  4. Thanthiriwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. J Chem Theory Comput 7:88–96

    Article  CAS  PubMed  Google Scholar 

  5. Plevin MJ, Bryce DL, Boisbouvier J (2010) Direct detection of CH/π interactions in proteins. Nat Chem 2:466–471

    Article  CAS  PubMed  Google Scholar 

  6. Ramirez-Gualito K, Alonso-Rios R, Quiroz-Garcia B, Rojas-Aguilar A, Diaz D, Jimenez-Barbero J, Cuevas G (2009) Enthalpic nature of the CH/π interaction involved in the recognition of carbohydrates by aromatic compounds, confirmed by a novel interplay of NMR, calorimetry, and theoretical calculations. J Am Chem Soc 131:18129–18138

    Article  CAS  PubMed  Google Scholar 

  7. Wheeler SE, McNeil AJ, Müller P, Swager TM, Houk KN (2010) Probing substituent effects in aryl–aryl interactions using stereoselective diels–alder cycloadditions. J Am Chem Soc 132:3304–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nishio M (2011) The CH/π hydrogen bond in chemistry. conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys 13:13873–13900

    Article  CAS  PubMed  Google Scholar 

  9. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res 46:2686–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toruvaev YV, Lyssenko KA, Barzilovich PY, Saratov GA, Shaikh MM, Singh A, Mathur P (2017) Self-assembly of conducting cocrystals via iodine···π(Cp) interactions. Cryst Eng Comm 19:5114–5121

    Article  Google Scholar 

  11. Maier JM, Li P, Vik EC, Yehl CJ, Strickland SMS, Shimizu KD (2017) Measurement of solvent OH–π interactions using a molecular balance. J Am Chem Soc 139:6550–6553

    Article  CAS  PubMed  Google Scholar 

  12. Emenike BU, Bey SN, Spinelle RA, Jones JT, Yoo B, Zeller M (2016) Cationic CH···π interactions as a function of solvation. Phys Chem Chem Phys 18:30940–30945

    Article  CAS  PubMed  Google Scholar 

  13. Gu Y, Zhao Z, Su H, Zhang P, Liu J, Niu G, Li S, Wang Z, Kwok RTK, Ni XL, Sun J, Qin A, Lam JWY, Tang BZ (2018) Exploration of biocompatible AIEgens from natural resources. Chem Sci 9:6497–6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen T, Yang S, Chai J, Song Y, Fan J, Rao B, Sheng H, Yu H, Zhu M (2017) Crystallization-induced emission enhancement: a novel fluorescent Au–Ag bimetallic nanocluster with precise atomic structure. Sci Adv 3:e1700956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Quiocho FA, Vyas NK (1984) Novel stereospecificity of the L-arabinose-binding protein. Nature 310:381–386

    Article  CAS  PubMed  Google Scholar 

  16. Vyas NK, Vyas MN, Quiocho FA (1988) Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science 242:1290–1295

    Article  CAS  PubMed  Google Scholar 

  17. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Book  Google Scholar 

  18. Chen X, Brauman JI (2008) Hydrogen bonding lowers intrinsic nucleophilicity of solvated nucleophiles. J Am Chem Soc 130:15038–15046

    Article  CAS  PubMed  Google Scholar 

  19. Saggu M, Levinson NM, Boxer SG (2012) Experimental quantification of electrostatics in X–H···π hydrogen bonds. J Am Chem Soc 134:18986–18997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suezawa H, Hashimoto T, Tsuchinaga K, Yoshida T, Yuzuri T, Sakakibara K, Hirota M, Nishio M (2000) Electronic substituent effect on intramolecular CH/π interaction as evidenced by NOE experiments. J Chem Soc Perkin Trans 6:1243–1249

    Article  Google Scholar 

  21. Bloom JWG, Raju RK, Wheeler SE (2012) Physical nature of substituent effects in XH/π interactions. J Chem Theory Comput 8:3167–3174

    Article  CAS  PubMed  Google Scholar 

  22. Ringer AL, Figgs MS, Sinnokrot MO, Sherrill CC (2006) Aliphatic C–H/π interactions: methane-benzene, methane-phenol, and methane-indole complexes. J Phys Chem A 110:10822–10828

    Article  CAS  PubMed  Google Scholar 

  23. Wheeler SE (2013) Understanding substituent effects in noncovalent interactions involving aromatic rings. Acc Chem Res 46:1029–1038

    Article  CAS  PubMed  Google Scholar 

  24. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2002) The interaction of benzene with chloro- and fluoromethanes: effects of halogenation on CH/π interaction. J Phys Chem A 106:4423–4428

    Article  CAS  Google Scholar 

  25. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Fujii A (2006) Magnitude and directionality of the interaction energy of the aliphatic CH/π interaction: significant difference from hydrogen bond. J Phys Chem A 110:10163–10168

    Article  CAS  PubMed  Google Scholar 

  26. Mishra BK, Karthikeyan S, Ramanthan V (2012) Tuning the C–H···π interaction by different substitutions in benzene-acetylene complexes. J Chem Theory Comput 8:1935–1942

    Article  CAS  PubMed  Google Scholar 

  27. Karthikeyan S, Ramanathan V, Mishra BK (2013) Influence of the substituents on the CH…π interaction: benzene–methane complex. J Phys Chem A 117:6687–6694

    Article  CAS  PubMed  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, revision D.01. Gaussian Inc., Wallingford, CT

    Google Scholar 

  29. Frisch MJ, Head-Gordon M, Pople JA (1990) Direct MP2 gradient method. Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  30. Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth order storage: theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220:122–128

    Article  CAS  Google Scholar 

  31. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149–5155

    Article  CAS  Google Scholar 

  32. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  33. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theory Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  34. Ransil BJ (1961) Studies in molecular structure. IV. Potential curve for the interaction of two helium atoms in single-configuration LCAO MO SCF approximation. J Chem Phys 34:2109–2118

    Article  CAS  Google Scholar 

  35. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  36. Tsuzuki S, Honda K, Uchimaru T, Mikami M, Tanabe K (2000) The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J Am Chem Soc 122:3746–3753

    Article  CAS  Google Scholar 

  37. Emenike BU, Spinelle RA, Rosario A, Shinn DW, Yoo B (2018) Solvent modulation of aromatic substituent effects in molecular balances controlled by CH–π interactions. J Phys Chem A 122:909–915

    Article  CAS  PubMed  Google Scholar 

  38. Kundu A, Sen S, Patwari GN (2015) The propargylbenzene dimer: C–H···π assisted ππ stacking. Phys Chem Chem Phys 17:9090–9097

    Article  CAS  PubMed  Google Scholar 

  39. Wheeler SE, Bloom JWG (2014) Toward a more complete understanding of noncovalent interactions involving aromatic rings. J Phys Chem A 118:6133–6147

    Article  CAS  PubMed  Google Scholar 

  40. Nikolova V, Ilieva S, Galabov B, Schaefer HF (2014) III. Experimental measurement and theory of substituent effects in π-hydrogen bonding: complexes of substituted phenols with benzene. J Org Chem 79:6823–6831

    Article  CAS  PubMed  Google Scholar 

  41. Hansch C, Leo A, Taft RW (1991) A survey of hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Natural Science Foundation of China (No. 31570024) and the Key Research Project of Natural Science Foundation of Anhui Provincial Universities (Nos. KJ2018A0161, KJ2019A0216) for financial supports, the Shanghai Supercomputer Centre for technical support and National Supercomputing Centre in Shenzhen for providing the computational resources and Gaussian 09 (version D01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongzi Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Wang, L., Fu, G. et al. Theoretical investigation on the substituent effects of the C–H/π interaction. Theor Chem Acc 139, 78 (2020). https://doi.org/10.1007/s00214-020-02595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02595-y

Keywords

Navigation