Skip to main content
Log in

Aromaticity and Induced Current Study of C8H ( n+2)8 (n = −6, −4, −2, 0): In the Viewpoint of Huckel’s Rule

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The (4n+2)π aromatic systems are studied in variants of C8H ( n+2)8 (n = −6, −4, −2, 0) via the localized orbital localization (LOL) and the electron localized function (ELF) by considering the induced current density. In this work, a four-electron dia-tropic (aromatic) ring current for (4n+2)π variants of C8H ( n+2)8 (n = −6, −4, −2, 0) and a two-electron paratropic (anti-aromatic) current for (4n)π arepredicted. With the HOMO and LUMO energies and also the HOMO/LUMO overlap in the whole space, it is possible to predict the transition states from delocalized currents in carbocyclic compounds to nitrogen-localized currents in all heterocyclic compounds in viewpoint of aromaticity and antiaromaticity. In addition, NICS and SNICS values confirm the degree of aromaticity and antiaromaticity in these rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Willstätter, E. Waser, and R. Willstätter. Ber. Dtsch. Chem. Ges., 1911, 44(3), 3423–3445.

    Article  Google Scholar 

  2. R. Willstätter and M. Heidelberger. Chem. Ber., 1913, 46, 517–527.

    Article  Google Scholar 

  3. J. I. Wu, I. Fernández, Y. Mo, and P. V. R. Schleyer. J. Chem. Theory Comput., 2012, 8, 1280–1287.

    Article  CAS  Google Scholar 

  4. R. Naor and Z. Luz. J. Chem. Phys., 1982, 76, 5662–5664.

    Article  CAS  Google Scholar 

  5. J. L. Andrés, O. Castaño, A. Morreale, R. Palmeiro, and R. Gomperts. J. Chem. Phys., 1998, 108, 203–207.

    Article  Google Scholar 

  6. T. Nishinaga, T. Ohmae, and M. Iyoda. Symmetry, 2010, 2, 76–97.

    Article  CAS  Google Scholar 

  7. C. Gellini and P. R. Salvi. Symmetry, 2010, 2, 1846–1924.

    Article  CAS  Google Scholar 

  8. P. G. Wenthold, D. A. Hrovat, W. T. Borden, and W. C. Lineberger. Science, 1996, 272, 1456–1459.

    Article  CAS  Google Scholar 

  9. A. Schild and B. Paulus. J. Comput. Chem., 2013, 34, 1393–1397.

    Article  CAS  Google Scholar 

  10. D. A. Hrovat and W. T. Borden. J. Am. Chem. Soc., 1992, 114, 5879–5881.

    Article  CAS  Google Scholar 

  11. C. D. Stevenson, E. C. Brown, D. A. Hrovat, and W. T. Borden. J. Am. Chem. Soc., 1998, 120, 8864–8867.

    Article  CAS  Google Scholar 

  12. J. L. Andrés, O. Castaño, A. Morreale, R. Palmeiro, and R. Gomperts. J. Chem. Phys., 1998, 108, 203–207.

    Article  Google Scholar 

  13. J. I. Wu, I. Fernandez, Y. Mo, and P. V. R. Schleyer. J. Chem. Theory Comput., 2012, 8, 1280–1287.

    Article  CAS  Google Scholar 

  14. A. Schild and B. J. Paulus. J. Comput. Chem., 2013, 34, 1393–1397.

    Article  CAS  Google Scholar 

  15. T. Yoshida and C. Tokizaki. Chem. Phys. Lett., 2015, 634, 134–139.

    Article  CAS  Google Scholar 

  16. M. Garavelli, F. Bernardi, V. Moliner, and M. Olivucci. Angew Chem. Int. Ed. Engl., 2001, 17, 40(8), 1466–1468.

    Article  CAS  Google Scholar 

  17. E. Steiner and P. W. Fowler. J. Phys. Chem. A, 2001, 105, 9553–9562.

    Article  CAS  Google Scholar 

  18. E. Steiner and P. W. Fowler. Chem. Commun., 2001, 2220–2221.

  19. E. Steiner, P. W. Fowler, and R. W. A. Havenith. J. Phys. Chem. A, 2002, 106, 7048–7056.

    Article  CAS  Google Scholar 

  20. F. London. J. Phys. Radium., 1937, 8, 397–409.

    Article  CAS  Google Scholar 

  21. L. Pauling. J. Chem. Phys., 1936, 4, 673–677.

    Article  CAS  Google Scholar 

  22. J. A. People. J. Chem. Phys., 1956, 24, 1111.

    Article  Google Scholar 

  23. P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. van Eikema Hommes. J. Am. Chem. Soc., 1996, 118, 6317–6318.

    Article  CAS  Google Scholar 

  24. H. C. Longuet-Higgins. Chem. Soc., Lond., 1967, 21, 109–110.

    Google Scholar 

  25. G. A. Anderson and J. J. Lagowski. Inorg. Chem., 1975, 14, 1845–1848.

    Article  CAS  Google Scholar 

  26. P. Paetzold. Phosphorus, Sulfur Silicon Relat. Elem., 1994, 93, 39–50.

    Article  Google Scholar 

  27. E. von Steuber, G. Elter, M. Noltemeyer, H. G. Schmidt, and A. Meller. Organometallics., 2000, 19, 5083–5091.

    Article  CAS  Google Scholar 

  28. I. Bertini, C. Luchinat, and S. Aime. Coordin. Chem. Rev., 1996, 150, 29.

    Article  Google Scholar 

  29. F. A. L. Anet and D. J. O’Leary. Concepts Magn. Reson., 1992, 4, 35.

    Article  Google Scholar 

  30. U. Haeberlen. High Resolution NMR in Solids. Advances in Magnetic Resonance. Suppl. 1. Academic Press: New York, 1976.

    Google Scholar 

  31. R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, and K. W. Zilm. Ann. Magn. Reson., 2008, 7, 1.

    Google Scholar 

  32. J. Herzfeld and A. E. Berger. J. Chem. Phys., 1980, 73, 6021.

    Article  CAS  Google Scholar 

  33. A. Soncini, P. W. Fowler, and L. W. Jenneskens. Phys. Chem. Chem. Phys., 2004, 6, 277–284.

    Article  CAS  Google Scholar 

  34. R. F. W. Bader. Atoms in Molecule: A Quantum Theory. Oxford Univ. Press: Oxford, 1990.

    Google Scholar 

  35. A. D. Becke and K. E. Edgecombe. J. Chem. Phys., 1990, 92, 5397.

    Article  CAS  Google Scholar 

  36. A. Savin, O. Jepsen, J. Flad, L. Andersen et al. Angew. Chem. Int. Ed. Engl., 1994, 31, 187.

    Article  Google Scholar 

  37. A. D. Becke. J. Mol. Struct. (THEOCHEM.), 2000, 527, 51.

    Article  Google Scholar 

  38. M. A. M. Forgeron, D. L. Bryce, R. E. Wasylishen, and R. Rosler. J. Phys. Chem. A, 2003, 107, 726–735.

    Article  CAS  Google Scholar 

  39. B. Kiran, A. K. Phukan, and E. D. Jemmis. Inorg. Chem., 2001, 40, 3615–3618.

    Article  CAS  Google Scholar 

  40. G. A. Anderson and J. J. Lagowski. Inorg. Chem., 1975, 14, 1845–1848.

    Article  CAS  Google Scholar 

  41. W. Kohn and L. J. Sham. J. Phys. Rev., 1965, 140A, 1133–1138.

    Article  Google Scholar 

  42. J. P. Perdew and K. Burke, Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  43. T. Lu and F. Chen. J. Mol. Graph. Model., 2012, 38, 314–323.

    Article  CAS  Google Scholar 

  44. T. Lu and F. Chen. J. Comp. Chem., 2012, 33, 580–592.

    Article  CAS  Google Scholar 

  45. B. H. Besler, K. M. Merz, and P. A. Kollman. J. Comp. Chem., 1990, 11, 431–439.

    Article  CAS  Google Scholar 

  46. L. E. Chirlian and M. M. Francl. J. Comp. Chem., 1987, 8, 894–905.

    Article  CAS  Google Scholar 

  47. G. M. Brneman and K. B. Wiberg. J. Comp. Chem., 1990, 11, 361.

    Article  Google Scholar 

  48. F. Martin and H. Zipse. J. Comp. Chem., 2005, 26, 97–105.

    Article  CAS  Google Scholar 

  49. M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, and F. Mollaamin. J. Phys. Chem. C, 2010, 114, 15315.

    Article  CAS  Google Scholar 

  50. M. Monajjemi and M. Khaleghian. J. Clust. Sci., 2011, 22, 673–692.

    Article  CAS  Google Scholar 

  51. M. Monajjemi. Struct. Chem., 2012, 23, 551.

    Article  CAS  Google Scholar 

  52. J. A. Pople, M. Head-Gordon, and K. Raghavachari. J. Chem. Phys., 1987, 87, 5968.

    Article  CAS  Google Scholar 

  53. M. J. Frisch, G.W. Trucks, and J. A. Pople. Gaussian 98, revision A.7. Gaussian, Inc. Pittsburgh, PA, 1998.

  54. E. von Steuber, G. Elter, M. Noltemeyer, H. G. Schmidt, and A. Meller. Organometallics, 2000, 19, 5083–5091.

    Article  CAS  Google Scholar 

  55. A. J. Bridgeman. Polyhedron, 1998, 17, 2279–2288.

    Article  CAS  Google Scholar 

  56. R. Daudel, R. Lefebvre, and C. Moser. Quantum Chemistry, Methods and Applications. Wiley-Interscience: New York, 1959, 449.

    Google Scholar 

  57. A. Streitwieser. Molecular Orbital Theory for Organic Chemists. Wiley: New York, 1961.

    Google Scholar 

  58. A. Matsuura and K. Komatsu. J. Am. Chem. Soc., 2001, 123, 1768–1769.

    Article  CAS  Google Scholar 

  59. R. McWeeny. Mol. Phys., 1958, 1, 311–321.

    Article  CAS  Google Scholar 

  60. E. W. Stout Jr. and P. Politzer. Theor. Chim. Acta, 1968, 12(5), 379–386.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to IAU University for supporting this work and providing the main equipment and mini computing lab for us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monajjemi.

Additional information

Conflict of Interests

The author declares that he has no conflict of interests.

Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 9, pp. 1421–1433.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monajjemi, M. Aromaticity and Induced Current Study of C8H ( n+2)8 (n = −6, −4, −2, 0): In the Viewpoint of Huckel’s Rule. J Struct Chem 60, 1361–1374 (2019). https://doi.org/10.1134/S0022476619090014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619090014

Keywords

Navigation