Skip to main content
Log in

Theoretical O–CH3 bond dissociation enthalpies of selected aromatic and non-aromatic molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Although methyl transfer reactions are important in both chemical and biological systems, there is a need for thermodynamic parameters related to methyl affinity and O–CH3 bond dissociation enthalpies (BDEs) relevant to a full understanding of the mechanisms of methyl transfer reactions. As a prelude to the construction of a database of O–CH3 BDEs, the present work examines the reliability of a series of theoretical methods for the prediction of O–CH3 BDEs using a set of 25 compounds that included both aromatic and non-aromatic molecules. The BDEs calculated by density functional theory (DFT) with traditional exchange–correlation functions exhibited much larger errors than those obtained by either the M06-2X or G4 methods. For the non-aromatic compounds, M06-2X/def2-TZVP performed slightly better than G4, but G4 was more accurate for the aromatic molecules. As a result, we recommend G4 as the preferred method for the theoretical estimation of O–CH3 bond dissociation enthalpies, although M06-2X may be a good alternative for large complex molecules when the use of G4 is impractical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Luo Y-R (2002) Handbook of bond dissociation energies in organic compounds, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Izgorodina EI, Coote ML, Radom L (2005) Trends in R–X bond dissociation energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): a surprising shortcoming of density functional theory. J Phys Chem A 109(33):7558–7566

    Article  CAS  PubMed  Google Scholar 

  3. da Silva G, Chen CC, Bozzelli JW (2006) Bond dissociation energy of the phenol O–H bond from ab initio calculations. Chem Phys Lett 424(1–3):42–45

    Article  CAS  Google Scholar 

  4. da Silva G, Kim CH, Bozzelli JW (2006) Thermodynamic properties (enthalpy, bond energy, entropy, and heat capacity) and internal rotor potentials of vinyl alcohol, methyl vinyl ether, and their corresponding radicals. J Phys Chem A 110(25):7925–7934

    Article  PubMed  CAS  Google Scholar 

  5. Black G, Curran H, Pichon S, Simmie J, Zhukov V (2010) Bio-butanol: combustion properties and detailed chemical kinetic model. Combust Flame 157(2):363–373

    Article  CAS  Google Scholar 

  6. Fu Y, Liu R, Liu L, Guo QX (2004) Solvation effects of H2O and DMSO on the O–H bond dissociation energies of substituted phenols. J Phys Org Chem 17(4):282–288

    Article  CAS  Google Scholar 

  7. Ghule VD, Sarangapani R, Jadhav PM, Tewari SP (2011) Theoretical studies on nitrogen rich energetic azoles. J Mol Model 17:1507–1515

    Article  CAS  PubMed  Google Scholar 

  8. Zhao J, Zeng H, Cheng X (2012) Bond dissociation energies for removal of the hydroxyl group in some alcohols from quantum chemical calculations. Int J Quantum Chem 112(3):665–671

    Article  CAS  Google Scholar 

  9. Oyeyemi VB, Keith JA, Carter EA (2014) Trends in bond dissociation energies of alcohols and aldehydes computed with multireference averaged coupled-pair functional theory. J Phys Chem A 118(17):3039–3050

    Article  CAS  PubMed  Google Scholar 

  10. Hou A, Zhou X, Wang T, Wang F (2018) Fixed-node diffusion quantum Monte Carlo method on dissociation energies and their trends for R–X bonds (R = Me, Et, i-Pr, t-Bu). J Phys Chem A 122(22):5050–5057

    Article  CAS  PubMed  Google Scholar 

  11. Nam PC, Van QV, Thong NM, Thao PTT (2017) Invited review. Bond dissociation enthalpies in benzene derivatives and effect of substituents: an overview of density functional theory (B3LYP) based computational approach. Vietnam J Chem 55(6):679

    Google Scholar 

  12. Qu X, Latino DARS, Aires-de-Sousa J (2013) A big data approach to the ultra-fast prediction of DFT-calculated bond energies. J Cheminform 5(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan B, Radom L (2012) BDE261: a comprehensive set of high-level theoretical bond dissociation enthalpies. J Phys Chem A 116(20):4975–4986

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Fan HJ, Hu HQ (2016) Assessment of contemporary theoretical methods for bond dissociation enthalpies. Chin J Chem Phys 29(4):453–461

    Article  CAS  Google Scholar 

  15. O’Reilly RJ, Karton A, Radom L (2012) N-H and N-Cl homolytic bond dissociation energies and radical stabilization energies: an assessment of theoretical procedures through comparison with benchmark-quality W2w data. Int J Quantum Chem 112(8):1862–1878

    Article  CAS  Google Scholar 

  16. O’Reilly RJ, Karton A (2016) A dataset of highly accurate homolytic N–Br bond dissociation energies obtained by means of W2 theory. Int J Quantum Chem 116(1):52–60

    Article  CAS  Google Scholar 

  17. Kosar N, Ayub K, Gilani MA, Mahmood T (2019) Benchmark DFT studies on C–CN homolytic cleavage and screening the substitution effect on bond dissociation energy. J Mol Model 25(2):47

    Article  PubMed  CAS  Google Scholar 

  18. Kosar N, Mahmood T, Ayub K (2017) Role of dispersion corrected hybrid GGA class in accurately calculating the bond dissociation energy of carbon halogen bond: a benchmark study. J Mol Struct 1150:447–458

    Article  CAS  Google Scholar 

  19. Boal AK, Grove TL, McLaughlin MI, Yennawar NH, Booker SJ, Rosenzweig AC (2011) Structural basis for methyl transfer by a radical SAM enzyme. Science 332(6033):1089–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Struck AW, Thompson ML, Wong LS, Micklefield J (2012) S-Adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 13(18):2642–2655

    Article  CAS  PubMed  Google Scholar 

  21. Thayer JS, Brinckman FE (1982) The biological methylation of metals and metalloids. Adv Organomet Chem 20:313–356

    Article  CAS  Google Scholar 

  22. Thayer JS (2002) Biological methylation of less-studied elements. Appl Organomet Chem 16(12):677–691

    Article  CAS  Google Scholar 

  23. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295

    Article  CAS  PubMed  Google Scholar 

  24. Schubeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326

    Article  CAS  PubMed  Google Scholar 

  25. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    Article  CAS  PubMed  Google Scholar 

  26. Shen L, Song C-X, He C, Zhang Y (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83:585–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hamdane D, Grosjean H, Fontecave M (2016) Flavin-dependent methylation of RNAs: complex chemistry for a simple modification. J Mol Biol 428(24):4867–4881

    Article  CAS  PubMed  Google Scholar 

  28. Mannisto PT, Kaakkola S (1999) Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51(4):593–628

    CAS  PubMed  Google Scholar 

  29. Jianyu Z, Klinman JP (2011) Enzymatic methyl transfer: role of an active site residue in generating active site compaction that correlates with catalytic efficiency. J Am Chem Soc 133(43):17134–17137

    Article  CAS  Google Scholar 

  30. Jianyu Z, Kulik HJ, Martinez TJ, Klinman JP (2015) Mediation of donor-acceptor distance in an enzymatic methyl transfer reaction. Proc Natl Acad Sci USA 112(26):7954–7959

    Article  CAS  Google Scholar 

  31. Wu-Yang H, Yi-Zhong C, Yanbo Z (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62(1):1–20

    Google Scholar 

  32. Jursic BS (1998) Complete basis set ab initio computational study of unimolecular decomposition of dimethyl ether. Chem Phys Lett 295(5–6):447–454

    Article  CAS  Google Scholar 

  33. Chandra A, Uchimaru T (2002) The OH bond dissociation energies of substituted phenols and proton affinities of substituted phenoxide ions: a DFT study. Int J Mol Sci 3(4):407–422

    Article  CAS  Google Scholar 

  34. Pratt DA, de Heer MI, Mulder P, Ingold KU (2001) Oxygen-carbon bond dissociation enthalpies of benzyl phenyl ethers and anisoles. An example of temperature dependent substituent effects. J Am Chem Soc 123(23):5518–5526

    Article  CAS  PubMed  Google Scholar 

  35. Ding LL, Zheng WR, Wang YX (2015) Theoretical study on homolytic C(sp(2))-O cleavage in ethers and phenols. New J Chem 39(9):6935–6943

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) in Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT

  37. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241

    Article  CAS  Google Scholar 

  39. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  40. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106

    Article  PubMed  CAS  Google Scholar 

  41. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem Phys Lett 166(3):275–280

    Article  CAS  Google Scholar 

  42. Grimme S (2003) Improved second-order Moller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J Chem Phys 118(20):9095–9102

    Article  CAS  Google Scholar 

  43. Jung YS, Lochan RC, Dutoi AD, Head-Gordon M (2004) Scaled opposite-spin second order Moller–Plesset correlation energy: an economical electronic structure method. J Chem Phys 121(20):9793–9802

    Article  CAS  PubMed  Google Scholar 

  44. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126(8):084108

    Article  PubMed  CAS  Google Scholar 

  45. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97(4):2571–2577

    Article  Google Scholar 

  46. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305

    Article  CAS  PubMed  Google Scholar 

  47. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  48. Creary X (2006) Super radical stabilizers. Acc Chem Res 39(10):761–771

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JZ is thankful for the financial support from National Natural Science Foundation of China (NSFC 21772143), the Natural Science Foundation of Tianjin (17JCYBJC42200), Tianjin Youth 1000-Plan Talent Program and Startup Funding of Tianjin University. Generous support by the School of Pharmaceutical Science and Technology, Tianjin University, China, including computer time on the SPST computer cluster Arran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank H. Quina, Jianyu Zhang or Adelia J. A. Aquino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, T., Quina, F.H., Tunega, D. et al. Theoretical O–CH3 bond dissociation enthalpies of selected aromatic and non-aromatic molecules. Theor Chem Acc 139, 75 (2020). https://doi.org/10.1007/s00214-020-02592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02592-1

Keywords

Navigation