Skip to main content
Log in

Intercalation of small molecules in alkali metal fullerides superconductors

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Using a BCS-adapted equation via multivariate analysis of structural and electronic properties, we calculated the critical temperature of fullerides A2BC60 and A3C60, with pure A and B alkaline metal or solvated with NH3 and CH3NH2, in good agreement with the experimental data. In the ammoniation of Na2CsC60, concomitant expansion of the lattice and the increasing ionic character of the chemical bonds between the ligands and C60, the critical temperature rises by about 20 K. For methylamine, there is an increase in critical temperature far lower than with ammonia, indicating that anisotropic lattice expansion does not favor the phenomenon. Besides crystal lattice expansion, a known factor that influences the critical temperature, our model identifies the other structural and electronic factors that contribute to the critical temperature of these materials. In alkali metal hydration, the crystal is expanded at the same time that the HOMO-LUMO gap is reduced, favoring electron transfer between the metal–ligand complex and C60. With the intercalation of water molecules in these fullerides, we predict that Na3C60 becomes superconducting at a critical temperature of 47.2 K and that Cs3C60 reaches 50 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou O, Fleming RM, Murphy DW, Rosseinsky MJ, Ramirez AP, van Dover RB, Haddon RC (1993) Increased transition temperature in superconducting Na2CsC60 by intercalation of ammonia. Nature 362:433–435. https://doi.org/10.1038/362433a0

    Article  CAS  Google Scholar 

  2. Takabayashi Y, Prassides K (2016) Unconventional high- TC superconductivity in fullerides. Philos Trans R Soc A 374:20150320. https://doi.org/10.1098/rsta.2015.0320

    Article  CAS  Google Scholar 

  3. Silva RC, Bastos CC, Pavao AC (2019) High- TC fullerides. Physica C: Supercond Appl. 561:13–17. https://doi.org/10.1016/j.physc.2019.02.001

    Article  CAS  Google Scholar 

  4. Eliashberg GM (1960) Interactions between electrons and lattice vibrations in a superconductor. Sov Phys JETP 11:696–702

    Google Scholar 

  5. McMillan WL (1968) Transition temperature of strong-coupled superconductors. Phys Rev 167:331–344. https://doi.org/10.1103/PhysRev.167.331

    Article  CAS  Google Scholar 

  6. Akashi R, Arita R (2013) Nonempirical study of superconductivity in alkali-doped fullerides based on density functional theory for superconductors. Phys Rev B 88:054510. https://doi.org/10.1103/PhysRevB.88.054510

    Article  CAS  Google Scholar 

  7. Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of Superconductivity. Phys Rev 108:1175–1204. https://doi.org/10.1103/PhysRev.108.1175

    Article  CAS  Google Scholar 

  8. Pauling L (1968) The Resonating-valence-bond theory of superconductivity: crest superconductors and trough superconductors. Proce Natl Acad Sci USA 60:59–65. https://doi.org/10.1073/pnas.60.1.59

    Article  CAS  Google Scholar 

  9. Pauling L (1991) The structure of K3C60 and the mechanism of superconductivity. Proc Natl Acad Sci USA 88:9208–9209. https://doi.org/10.1073/pnas.88.20.9208

    Article  CAS  PubMed  Google Scholar 

  10. Hetfleisch F, Stepper M, Roeser HP, Bohr A, Lopez JS, Mashmool M, Roth S (2015) A correlation between ionization energies and critical temperatures in Superconducting A3C60 fullerides. Physica C 513:1–3. https://doi.org/10.1016/j.physc.2015.02.048

    Article  CAS  Google Scholar 

  11. Webb GW, Marsiglio F, Hirsch JE (2015) Superconductivity in the elements. Alloys Simple Compd Phys C 514:17–27. https://doi.org/10.1016/j.physc.2015.02.037

    Article  CAS  Google Scholar 

  12. Tanaka J (2006) Ab initio quantum chemical calculation of the pair potentials of superconductors. Physica C 445–448:150–153. https://doi.org/10.1016/j.physc.2006.06.039

    Article  CAS  Google Scholar 

  13. Makino Y, Yoshimuira K (2014) Empirical understanding of superconducting critical temperature based on valence electron parameters. Physica C 499:24–35. https://doi.org/10.1016/j.physc.2014.01.006

    Article  CAS  Google Scholar 

  14. Gunnarsson O (1997) Superconductivity in fullerides. Rev Mod Phys 69:575–606. https://doi.org/10.1103/RevModPhys.69.575

    Article  CAS  Google Scholar 

  15. Ramirez AP (2015) Superconductivity in alkali-doped C60. Physica C 514:166–172. https://doi.org/10.1016/j.physc.2015.02.014

    Article  CAS  Google Scholar 

  16. Larsson S (2014) TC Dependence on Hubbard U in the fullerenes. J Supercond Novel Mag 28:315–317. https://doi.org/10.1007/s10948-014-2881-9

    Article  CAS  Google Scholar 

  17. Hetfleisch F, Gunnarsson O, Srama R, Han JE, Stepper M, Roeser H-P, Bohr A, Lopez JS, Mashmool M, Roth S (2018) Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides. Physica C 546:34–43. https://doi.org/10.1016/j.physc.2017.12.005

    Article  CAS  Google Scholar 

  18. Buzea C, Yamashita T (2000) Correlation between electronegativity and superconductivity. Physica B 281–282:951–952. https://doi.org/10.1016/S0921-4526(99)01202-8

    Article  Google Scholar 

  19. Diederichs J, Schilling JS, Herwig KW, Yelon WB (1997) Dependence of the superconducting transition temperature and lattice parameter on hydrostatic pressure for Rb3C60. J Phys Chem Solids 58:123–132. https://doi.org/10.1016/S0022-3697(96)00087-X

    Article  CAS  Google Scholar 

  20. Margadonna S, Brown CM, Lappas A, Prassides K, Tanigaki K, Knudsen KD, Bihan TL, Mézouar M (1999) Pressure and temperature evolution of the structure of the superconducting Na2CsC60 fulleride. J Solid State Chem 145:471–478. https://doi.org/10.1006/jssc.1998.8159

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg, JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01, Gaussian Inc. (2009) Wallingford CT

  22. Arcon D, Pregelj M, Zorko A, Ganin AY, Rosseinsky MJ, Takabayashi Y, Prassides K (2008) Antiferromagnetic resonance in methylaminated potassium fullerides (CH3NH2)K3C60. Phys Rev B 77:35104–35106. https://doi.org/10.1103/PhysRevB.77.035104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the CAPES and the CENAPAD-SP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. Pavão.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Festschrift in honor of Prof. Fernando R. Ornellas” Guest Edited by Adélia Justino Aguiar Aquino, Antonio Gustavo Sampaio de Oliveira Filho and Francisco Bolivar Correto Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, R.C., Bastos, C.C. & Pavão, A.C. Intercalation of small molecules in alkali metal fullerides superconductors. Theor Chem Acc 139, 79 (2020). https://doi.org/10.1007/s00214-020-02591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02591-2

Keywords

Navigation