Skip to main content
Log in

Toward a microscopic understanding of the catalytic oxidation of methane on metal surfaces using density functional theory: a review

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism of the catalytic oxidation of methane on metal surfaces is increasingly used in different fields of chemical technology and process development. The practical desire to understand such a reaction mechanism stems from the long-held belief that a microscopic understanding may facilitate the design of more efficient chemical processes and catalysts. Density functional theory has been helpful in this regard and the pathways of the catalytic oxidation reaction have recently been determined, providing a clear indication as to how this reaction is likely to take place on metal surfaces. The state of research into the catalytic oxidation of methane on metal surfaces is critically reviewed, with emphasis on recent advances in the reaction mechanism from the quantum chemistry point of view. Special attention is given to the adsorption and activation of methane on a variety of metal surfaces. Mechanistic pathways and kinetics of the oxidation reaction are reviewed, and critical issues in the research on the oxidation mechanism are discussed. Isoelectronic adsorbates tend to go to similar sites to form transition states. The higher the valency of the adsorbate, the greater its tendency to access a transition state close to a high coordination site. Significant changes in reaction pathways could be induced by hydroxyl species. The importance of bimetallic catalysts for the catalytic oxidation reaction should not be underestimated. The current challenges to and opportunities for promoting the understanding of the oxidation mechanism are summarized, in hopes of facilitating progress in this emerging area. Potential topics of oncoming focus are finally highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted with permission from Ref. [95]. Copyright 2012, Elsevier Ltd.

Fig. 2

Adapted with permission from Ref. [97]. Copyright 2014, Elsevier Ltd.

Fig. 3

Adapted with permission from Ref. [124]. Copyright 2010, Elsevier Ltd.

Fig. 4

Adapted with permission from Ref. [111]. Copyright 2012, American Chemical Society

Fig. 5

Adapted with permission from Ref. [111]. Copyright 2012, American Chemical Society

Fig. 6

Adapted with permission from Ref. [126]. Copyright 2014, Elsevier Ltd.

Fig. 7

Adapted with permission from Ref. [66]. Copyright 2014, Elsevier Ltd.

Fig. 8

Adapted with permission from Ref. [129]. Copyright 2009, Elsevier Ltd.

Fig. 9

[101, 133]

Similar content being viewed by others

References

  1. Michaelides A, Hu P (2000) Insight into microscopic reaction pathways in heterogeneous catalysis. J Am Chem Soc 12(40):9866–9867

    Article  CAS  Google Scholar 

  2. Qi W, Ran J, Wang R, Du X, Shi J, Ran M (2016) Kinetic mechanism of effects of hydrogen addition on methane catalytic combustion over Pt(111) surface: a DFT study with cluster modeling. Comput Mater Sci 111:430–442

    Article  CAS  Google Scholar 

  3. Trinchero A, Hellman A, Grönbeck H (2013) Methane oxidation over Pd and Pt studied by DFT and kinetic modeling. Surf Sci 616:206–213

    Article  CAS  Google Scholar 

  4. Choudhary TV, Banerjee S, Choudhary VR (2002) Catalysts for combustion of methane and lower alkanes. Appl Catal A 234(1–2):1–23

    Article  CAS  Google Scholar 

  5. Gao J, Zheng Y, Jehng J-M, Tang Y, Wachs IE, Podkolzin SG (2015) Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 348(6235):686–690

    Article  CAS  PubMed  Google Scholar 

  6. Lunsford JH (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal Today 63(2–4):165–174

    Article  CAS  Google Scholar 

  7. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344(6184):616–619

    Article  CAS  PubMed  Google Scholar 

  8. Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A 346(1–2):1–27

    Article  CAS  Google Scholar 

  9. Kunte A, Raghu AK, Kaisare NS (2018) A spiral microreactor for improved stability and performance for catalytic combustion of propane. Chem Eng Sci 187:87–97

    Article  CAS  Google Scholar 

  10. Li Y-H, Hong J-R (2018) Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor. Appl Energy 211:843–853

    Article  CAS  Google Scholar 

  11. Eriksson S, Wolf M, Schneider A, Mantzaras J, Raimondi F, Boutonnet M, Järås S (2006) Fuel-rich catalytic combustion of methane in zero emissions power generation processes. Catal Today 117(4):447–453

    Article  CAS  Google Scholar 

  12. Basini L (2006) Fuel rich catalytic combustion: principles and technological developments in short contact time (SCT) catalytic processes. Catal Today 117(4):384–393

    Article  CAS  Google Scholar 

  13. Schwiedernoch R, Tischer S, Deutschmann O, Warnatz J (2002) Experimental and numerical investigation of the ignition of methane combustion in a platinum-coated honeycomb monolith. Proc Combust Inst 29(1):1005–1011

    Article  CAS  Google Scholar 

  14. Pizza G, Mantzaras J, Frouzakis CE (2010) Flame dynamics in catalytic and non-catalytic mesoscale microreactors. Catal Today 155(1–2):123–130

    Article  CAS  Google Scholar 

  15. Mantzaras J (2006) Understanding and modeling of thermofluidic processes in catalytic combustion. Catal Today 117(4):394–406

    Article  CAS  Google Scholar 

  16. Reinke M, Mantzaras J, Schaeren R, Bombach R, Inauen A, Schenker S (2004) High-pressure catalytic combustion of methane over platinum: in situ experiments and detailed numerical predictions. Combust Flame 136(1–2):217–240

    Article  CAS  Google Scholar 

  17. Yan Y, Tang W, Zhang L, Pan W, Yang Z, Chen Y, Lin J (2014) Numerical simulation of the effect of hydrogen addition fraction on catalytic micro-combustion characteristics of methane-air. Int J Hydrog Energy 39(4):1864–1873

    Article  CAS  Google Scholar 

  18. Pizza G, Mantzaras J, Frouzakis CE, Tomboulides AG, Boulouchos K (2009) Suppression of combustion instabilities of premixed hydrogen/air flames in microchannels using heterogeneous reactions. Proc Combust Inst 32(2):3051–3058

    Article  CAS  Google Scholar 

  19. Karagiannidis S, Mantzaras J, Jackson G, Boulouchos K (2007) Hetero-/homogeneous combustion and stability maps in methane-fueled catalytic microreactors. Proc Combust Inst 31(2):3309–3317

    Article  CAS  Google Scholar 

  20. Reinke M, Mantzaras J, Bombach R, Schenker S, Inauen A (2005) Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar. Combust Flame 141(4):448–468

    Article  CAS  Google Scholar 

  21. Wiswall JT, Li J, Wooldridge MS, Im HG (2011) Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures. Combust Flame 158(1):139–145

    Article  CAS  Google Scholar 

  22. Hsieh W-D, Lu J-H, Chen R-H, Lin T-H (2009) Deposit formation characteristics of gasoline spray in a stagnation-point flame. Combust Flame 156(10):1909–1916

    Article  CAS  Google Scholar 

  23. Sui R, Mantzaras J (2016) Combustion stability and hetero-/homogeneous chemistry interactions for fuel-lean hydrogen/air mixtures in platinum-coated microchannels. Combust Flame 173:370–386

    Article  CAS  Google Scholar 

  24. Sui R, Mantzaras J, Bombach R (2017) A comparative experimental and numerical investigation of the heterogeneous and homogeneous combustion characteristics of fuel-rich methane mixtures over rhodium and platinum. Proc Combust Inst 36(3):4313–4320

    Article  CAS  Google Scholar 

  25. Schultze M, Mantzaras J, Grygier F, Bombach R (2015) Hetero-/homogeneous combustion of syngas mixtures over platinum at fuel-rich stoichiometries and pressures up to 14 bar. Proc Combust Inst 35(2):2223–2231

    Article  CAS  Google Scholar 

  26. Wang T, Porosoff MD, Chen JG (2014) Effects of oxide supports on the water-gas shift reaction over PtNi bimetallic catalysts: activity and methanation inhibition. Catal Today 233:61–69

    Article  CAS  Google Scholar 

  27. Montebelli A, Visconti CG, Groppi G, Tronconi E, Cristiani C, Ferreira C, Kohler S (2014) Methods for the catalytic activation of metallic structured substrates. Catal Sci Technol 4(9):2846–2870

    Article  CAS  Google Scholar 

  28. Domínguez MI, Pérez A, Centeno MA, Odriozola JA (2014) Metallic structured catalysts: influence of the substrate on the catalytic activity. Appl Catal A 478:45–57

    Article  CAS  Google Scholar 

  29. Kathiraser Y, Oemar U, Saw ET, Li Z, Kawi S (2015) Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chem Eng J 278:62–78

    Article  CAS  Google Scholar 

  30. Pan M, Feng Z, Jiang L (2016) Reaction characteristics of methanol steam reforming inside mesh microchannel reactor. Int J Hydrog Energy 41(3):1441–1452

    Article  CAS  Google Scholar 

  31. Cao C, Zhang N, Dang D, Cheng Y (2017) Numerical evaluation of a microchannel methane reformer used for miniaturized GTL: operating characteristics and greenhouse gases emission. Fuel Process Technol 167:78–91

    Article  CAS  Google Scholar 

  32. Pan M, Wu Q, Jiang L, Zeng D (2015) Effect of microchannel structure on the reaction performance of methanol steam reforming. Appl Energy 154:416–427

    Article  CAS  Google Scholar 

  33. García-Diéguez M, Finocchio E, Larrubia MÁ, Alemany LJ, Busca G (2010) Characterization of alumina-supported Pt, Ni and Pt–Ni alloy catalysts for the dry reforming of methane. J Catal 274(1):11–20

    Article  CAS  Google Scholar 

  34. Chin Y-H, King DL, Roh H-S, Wang Y, Heald SM (2006) Structure and reactivity investigations on supported bimetallic Au–Ni catalysts used for hydrocarbon steam reforming. J Catal 244(2):153–162

    Article  CAS  Google Scholar 

  35. Ahn J, Eastwood C, Sitzki L, Ronney PD (2005) Gas-phase and catalytic combustion in heat-recirculating burners. Proc Combust Inst 30(2):2463–2472

    Article  CAS  Google Scholar 

  36. Di Benedetto A, Landi G, Di Sarli V, Barbato PS, Pirone R, Russo G (2012) Methane catalytic combustion under pressure. Catal Today 197(1):206–213

    Article  CAS  Google Scholar 

  37. Li Y-H, Chen G-B, Hsu H-W, Chao Y-C (2010) Enhancement of methane combustion in microchannels: effects of catalyst segmentation and cavities. Chem Eng J 160(2):715–722

    Article  CAS  Google Scholar 

  38. Persson K, Ersson A, Jansson K, Fierro JLG, Järås SG (2006) Influence of molar ratio on Pd–Pt catalysts for methane combustion. J Catal 243(1):14–24

    Article  CAS  Google Scholar 

  39. Persson K, Ersson A, Jansson K, Iverlund N, Järås S (2005) Influence of co-metals on bimetallic palladium catalysts for methane combustion. J Catal 231(1):139–150

    Article  CAS  Google Scholar 

  40. Juurlink LBF, Killelea DR, Utz AL (2009) State-resolved probes of methane dissociation dynamics. Prog Surf Sci 84(3–4):69–134

    Article  CAS  Google Scholar 

  41. Xu X, Li Y, Qu B, Du L (2012) New insights into the two catalyst cycles of the Pt+-catalyzed oxidation of methane by oxygen: spin-orbit coupling, spin-inversion probabilities, and kinetic information. Comput Theor Chem 989:75–85

    Article  CAS  Google Scholar 

  42. Stegelmann C, Andreasen A, Campbell CT (2009) Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc 131(23):8077–8082

    Article  CAS  PubMed  Google Scholar 

  43. Rioux RM, Marsh AL, Gaughan JS, Somorjai GA (2007) Oxidation and reforming reactions of CH4 on a stepped Pt(557) single crystal. Catal Today 123(1–4):265–275

    Article  CAS  Google Scholar 

  44. Persson K, Pfefferle LD, Schwartz W, Ersson A, Järås SG (2007) Stability of palladium-based catalysts during catalytic combustion of methane: the influence of water. Appl Catal B 74(3–4):242–250

    Article  CAS  Google Scholar 

  45. Zhang R, Li P, Xiao R, Liu N, Chen B (2016) Insight into the mechanism of catalytic combustion of acrylonitrile over Cu-doped perovskites by an experimental and theoretical study. Appl Catal B 196:142–154

    Article  CAS  Google Scholar 

  46. Debnath T, Ash T, Ghosh A, Sarkar S, Das AK (2018) Exploration of unprecedented catalytic dehydrogenation mechanism of methylamine-water mixture in presence of Ru-pincer complex: a systematic DFT study. J Catal 363:164–182

    Article  CAS  Google Scholar 

  47. Petrova NV, Yakovkin IN (2007) Mechanism of associative oxygen desorption from Pt(111) surface. Eur Phys J B 58(3):257–262

    Article  CAS  Google Scholar 

  48. Creighan SC, Mukerji RJ, Bolina AS, Lewis DW, Brown WA (2003) The adsorption of CO on the stepped Pt{211} surface: a comparison of theory and experiment. Catal Lett 88(1–2):39–45

    Article  CAS  Google Scholar 

  49. Orita H, Inada Y (2005) DFT investigation of CO adsorption on Pt(211) and Pt(311) surfaces from low to high coverage. J Phys Chem B 109(47):22469–22475

    Article  CAS  PubMed  Google Scholar 

  50. Psofogiannakis G, St-Amant A, Ternan M (2006) Methane oxidation mechanism on Pt(111): a cluster model DFT study. J Phys Chem B 110(48):24593–24605

    Article  CAS  PubMed  Google Scholar 

  51. Aghalayam P, Park YK, Fernandes N, Papavassiliou V, Mhadeshwar AB, Vlachos DG (2003) A C1 mechanism for methane oxidation on platinum. J Catal 213(1):23–38

    Article  CAS  Google Scholar 

  52. Wang W, Zhu C, Cao Y (2010) DFT study on pathways of steam reforming of ethanol under cold plasma conditions for hydrogen generation. Int J Hydrog Energy 35(5):1951–1956

    Article  CAS  Google Scholar 

  53. Wang S-G, Liao X-Y, Hu J, Cao D-B, Li Y-W, Wang J, Jiao H (2007) Kinetic aspect of CO2 reforming of CH4 on Ni(111): a density functional theory calculation. Surf Sci 601(5):1271–1284

    Article  CAS  Google Scholar 

  54. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497

    Article  CAS  PubMed  Google Scholar 

  55. Dianat A, Seriani N, Ciacchi LC, Bobeth M, Cuniberti G (2014) DFT study of reaction processes of methane combustion on PdO(100). Chem Phys 443:53–60

    Article  CAS  Google Scholar 

  56. Liao M-S, Zhang Q-E (1998) Dissociation of methane on different transition metals. J Mol Catal A Chem 136(2):185–194

    Article  CAS  Google Scholar 

  57. Niu J, Ran J, Du X, Qi W, Zhang P, Yang L (2017) Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni–Pt bimetallic surfaces: a density functional theory study. Mol Catal 434:206–218

    Article  CAS  Google Scholar 

  58. Burch R, Crittle DJ, Hayes MJ (1999) C–H bond activation in hydrocarbon oxidation on heterogeneous catalysts. Catal Today 47(1–4):229–234

    Article  CAS  Google Scholar 

  59. Burch R, Urbano FJ, Loader PK (1995) Methane combustion over palladium catalysts: the effect of carbon dioxide and water on activity. Appl Catal A 123(1):173–184

    Article  CAS  Google Scholar 

  60. Choudhary VR, Uphade BS, Pataskar SG (2002) Low temperature complete combustion of dilute methane over Mn-doped ZrO2 catalysts: factors influencing the reactivity of lattice oxygen and methane combustion activity of the catalyst. Appl Catal A 227(1–2):29–41

    Article  CAS  Google Scholar 

  61. Luntz AC, Bethune DS (1989) Activation of methane dissociation on a Pt(111) surface. J Chem Phys 90(2):1274–1280

    Article  CAS  Google Scholar 

  62. Liu S, Geng Z, Wang Y, Yan Y (2012) Density functional studies of thermal activation of methane by gas-phase [Pt(H)(OH)]+. Comput Theor Chem 980:32–36

    Article  CAS  Google Scholar 

  63. Lv L, Wang YC, Wang Q, Liu HW (2010) Why is Pt +4 the least efficient cationic cluster in activating the C–H bond in methane? Two-state reaction computational investigation. J Phys Chem C 114(41):17610–17620

    Article  CAS  Google Scholar 

  64. Balcells D, Clot E, Eisenstein O (2010) C–H bond activation in transition metal species from a computational perspective. Chem Rev 110(2):749–823

    Article  CAS  PubMed  Google Scholar 

  65. Bartczak WM, Stawowska J (2004) Interaction of dihydrogen with transition metal (Pd, Ni, Ag, Cu) clusters. Struct Chem 15(5):447–459

    Article  CAS  Google Scholar 

  66. Zhang M, Yang K, Zhang X, Yu Y (2014) Effect of Ni(111) surface alloying by Pt on partial oxidation of methane to syngas: a DFT study. Surf Sci 630:236–243

    Article  CAS  Google Scholar 

  67. Zhu H, Lu X, Guo W, Li L, Zhao L, Shan H (2012) Theoretical insight into the desulfurization of thiophene on Pt(110): a density functional investigation. J Mol Catal A Chem 363–364:18–25

    Article  CAS  Google Scholar 

  68. Shin K, Kim DH, Yeo SC, Lee HM (2012) Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: a DFT study. Catal Today 185(1):94–98

    Article  CAS  Google Scholar 

  69. Zhao Y, Li S, Sun Y (2013) Theoretical study on the dissociative adsorption of CH4 on Pd-doped Ni surfaces. Chin J Catal 34(5):911–922

    Article  CAS  Google Scholar 

  70. Jacob T, Muller RP, Goddard WA (2003) Chemisorption of atomic oxygen on Pt(111) from DFT studies of Pt-clusters. J Phys Chem B 107(35):9465–9476

    Article  CAS  Google Scholar 

  71. Kua J, Goddard WA (1998) Chemisorption of organics on platinum. 1. The interstitial electron model. J Phys Chem B 102(47):9481–9491

    Article  CAS  Google Scholar 

  72. Cui Q, Musaev DG, Morokuma K (1998) Molecular orbital study of H2 and CH4 activation on small metal clusters. 2. Pd3 and Pt3. J Phys Chem A 102(31):6373–6384

    Article  CAS  Google Scholar 

  73. Jacob T, Goddard WA (2005) Chemisorption of (CHx and C2Hy) hydrocarbons on Pt(111) clusters and surfaces from DFT studies. J Phys Chem B 109(1):297–311

    Article  CAS  PubMed  Google Scholar 

  74. Chempath S, Bell AT (2007) A DFT study of the mechanism and kinetics of methane oxidation to formaldehyde occurring on silica-supported molybdena. J Catal 247(1):119–126

    Article  CAS  Google Scholar 

  75. Roy G, Chattopadhyay AP (2017) Dissociation of methane on Ni4 cluster-A DFT study. Comput Theor Chem 1106:7–14

    Article  CAS  Google Scholar 

  76. Polynskaya JG, Lebedev AV, Knizhnik AA, Sinitsa AS, Smirnov RV, Potapkin BV (2019) Influence of charge state and active site structure of tetrahedral copper and silver clusters on the methane activation. Comput Theor Chem 1147:51–61

    Article  CAS  Google Scholar 

  77. Liu Y-Y, Geng Z-Y, Wang Y-C, Liu J-L, Hou X-F (2013) DFT studies for activation of C-H bond in methane by gas-phase Rh + n (n= 1–3). Comput Theor Chem 1015:52–63

    Article  CAS  Google Scholar 

  78. Sun Q, Li Z, Du A, Chen J, Zhu Z, Smith SC (2012) Theoretical study of two states reactivity of methane activation on iron atom and iron dimer. Fuel 96:291–297

    Article  CAS  Google Scholar 

  79. Sun Q, Li Z, Wang M, Du A, Smith SC (2012) Methane activation on Fe4 cluster: a density functional theory study. Chem Phys Lett 550:41–46

    Article  CAS  Google Scholar 

  80. Viñes F, Lykhach Y, Staudt T, Lorenz MPA, Papp C, Steinrück H-P, Libuda J, Neyman KM, Görling A (2010) Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Chem Eur J 16(22):6530–6539

    Article  PubMed  CAS  Google Scholar 

  81. Jiang Y, Chu W, Jiang C-F, Wang Y-H (2007) A DFT study of Pdn (n= 1–7) clusters and their interactions with CH4 molecule. Acta Phys Chim Sin 23(11):1723–1727

    CAS  Google Scholar 

  82. Ciobica IM, van Santen RA (2002) A DFT study of CHx chemisorption and transition states for C-H activation on the Ru(1120) surface. J Phys Chem B 106(24):6200–6205

    Article  CAS  Google Scholar 

  83. Ciobîcǎ IM, Frechard F, van Santen RA, Kleyn AW, Hafner J (2000) A DFT study of transition states for C–H activation on the Ru(0001) surface. J Phys Chem B 104(14):3364–3369

    Article  CAS  Google Scholar 

  84. Yang M-L, Zhu Y-A, Fan C, Sui Z-J, Chen D, Zhou X-G (2010) Density functional study of the chemisorption of C1, C2 and C3 intermediates in propane dissociation on Pt(111). J Mol Catal A Chem 321(1–2):42–49

    Article  CAS  Google Scholar 

  85. Wang J, Wang G-C (2018) Promotion effect of methane activation on Cu(111) by the surface-active oxygen species: a combination of DFT and ReaxFF study. J Phys Chem C 122(30):17338–17346

    Article  CAS  Google Scholar 

  86. Jiang Z, Wu Z, Fang T, Yi C (2019) Enhancement C-H bond activation of methane via doping Pd, Pt, Rh and Ni on Cu(1 1 1) surface: a DFT study. Chem Phys Lett 715:323–329

    Article  CAS  Google Scholar 

  87. Wang S-G, Cao D-B, Li Y-W, Wang J, Jiao H (2006) CH4 dissociation on Ni surfaces: density functional theory study. Surf Sci 600(16):3226–3234

    Article  CAS  Google Scholar 

  88. Anghel AT, Jenkins SJ, Wales DJ, King DA (2006) Theory of C2Hx species on Pt{110}(1 × 2): structure, stability, and thermal chemistry. J Phys Chem B 110(9):4147–4156

    Article  CAS  PubMed  Google Scholar 

  89. Li K, Zhou Z, Wang Y, Wu Z (2013) A theoretical study of CH4 dissociation on NiPd(111) surface. Surf Sci 612:63–68

    Article  CAS  Google Scholar 

  90. Han D, Nave S, Jackson B (2013) Dissociative chemisorption of methane on Pt(110)-(1 × 2): effects of lattice motion on reactions at step edges. J Phys Chem A 117(36):8651–8659

    Article  CAS  PubMed  Google Scholar 

  91. Lv C-Q, Ling K-C, Wang G-C (2009) Methane combustion on Pd-based model catalysts: Structure sensitive or insensitive? J Chem Phys 131(14):144704

    Article  PubMed  CAS  Google Scholar 

  92. Paul J-F, Sautet P (1994) Influence of the surface atom metallic coordination in the adsorption of ethylene on a platinum surface: a theoretical study. J Phys Chem 98(42):10906–10912

    Article  CAS  Google Scholar 

  93. Delbecq F, Sautet P (1993) Low-temperature adsorption of formaldehyde on a platinum (111) surface. A theoretical study. Langmuir 9(1):197–207

    Article  CAS  Google Scholar 

  94. van Duijneveldt JS, Frenkel D (1992) Computer simulation study of free energy barriers in crystal nucleation. J Chem Phys 96(6):4655–4668

    Article  Google Scholar 

  95. Zhang R, Song L, Wang Y (2012) Insight into the adsorption and dissociation of CH4 on Pt(h k l) surfaces: a theoretical study. Appl Surf Sci 258(18):7154–7160

    Article  CAS  Google Scholar 

  96. Wang B, Song L, Zhang R (2012) The dehydrogenation of CH4 on Rh(111), Rh(110) and Rh(100) surfaces: a density functional theory study. Appl Surf Sci 258(8):3714–3722

    Article  CAS  Google Scholar 

  97. Li J, Croiset E, Ricardez-Sandoval L (2014) Effect of carbon on the Ni catalyzed methane cracking reaction: a DFT study. Appl Surf Sci 311:435–442

    Article  CAS  Google Scholar 

  98. Trimm DL (1983) Catalytic combustion (review). Appl Catal 7(3):249–282

    Article  CAS  Google Scholar 

  99. Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A (2002) Catalytic combustion of methane over palladium-based catalysts. Catal Rev Sci Eng 44(4):593–649

    Article  CAS  Google Scholar 

  100. Arai H, Yamada T, Eguchi K, Seiyama T (1986) Catalytic combustion of methane over various perovskite-type oxides. Appl Catal 26:265–276

    Article  CAS  Google Scholar 

  101. Lee JH, Trimm DL (1995) Catalytic combustion of methane. Fuel Process Technol 42(2–3):339–359

    Article  CAS  Google Scholar 

  102. Hu W, Li G, Chen J, Huang F, Gong M, Zhong L, Chen Y (2017) Enhancement of activity and hydrothermal stability of Pd/ZrO2-Al2O3 doped by Mg for methane combustion under lean conditions. Fuel 194:368–374

    Article  CAS  Google Scholar 

  103. Zou X, Rui Z, Song S, Ji H (2016) Enhanced methane combustion performance over NiAl2O4-interface-promoted Pd/γ-Al2O3. J Catal 338:192–201

    Article  CAS  Google Scholar 

  104. García-Diéguez M, Iglesia E (2013) Structure sensitivity via decoration of low-coordination exposed metal atoms: CO oxidation catalysis on Pt clusters. J Catal 301:198–209

    Article  CAS  Google Scholar 

  105. Ates A, Pfeifer P, Görke O (2013) Thin-film catalytic coating of a microreactor for preferential CO oxidation over Pt catalysts. Chem Ing Tech 85(5):664–672

    Article  CAS  Google Scholar 

  106. Menning CA, Chen JG (2010) Regenerating Pt–3d–Pt model electrocatalysts through oxidation-reduction cycles monitored at atmospheric pressure. J Power Sources 195(10):3140–3144

    Article  CAS  Google Scholar 

  107. DeWitt KM, Valadez L, Abbott HL, Kolasinski KW, Harrison I (2006) Using effusive molecular beams and microcanonical unimolecular rate theory to characterize CH4 dissociation on Pt(111). J Phys Chem B 110(13):6705–6713

    Article  CAS  PubMed  Google Scholar 

  108. Jiang Z, Li L, Xu J, Fang T (2013) Density functional periodic study of the dehydrogenation of methane on Pd(111) surface. Appl Surf Sci 286:115–120

    Article  CAS  Google Scholar 

  109. Jia Q, Segre CU, Ramaker D, Caldwell K, Trahan M, Mukerjee S (2013) Structure-property-activity correlations of Pt-bimetallic nanoparticles: a theoretical study. Electrochim Acta 88:604–613

    Article  CAS  Google Scholar 

  110. Moussounda PS, Haroun MF, Rakotovelo G, Légaré P (2007) A theoretical study of CH4 dissociation on Pt(100) surface. Surf Sci 601(18):3697–3701

    Article  CAS  Google Scholar 

  111. Yu W, Porosoff MD, Chen JG (2012) Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112(11):5780–5817

    Article  CAS  PubMed  Google Scholar 

  112. Yang J, Miao J, Li X, Xu W (2012) Density functional theory studies on the mechanism of activation of methane by homonuclear bimetallic Ni–Ni. Comput Theor Chem 996:117–124

    Article  CAS  Google Scholar 

  113. Wang R, Ran J, Qi W, Niu J, Du X (2015) A comparison of methane activation on catalysts Pt2 and PtNi. Comput Theor Chem 1073:94–101

    Article  CAS  Google Scholar 

  114. Liu H, Yan R, Zhang R, Wang B, Xie K (2011) A DFT theoretical study of CH4 dissociation on gold-alloyed Ni(111) surface. J Nat Gas Chem 20(6):611–617

    Article  CAS  Google Scholar 

  115. Chen JG, Menning CA, Zellner MB (2008) Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep 63(5):201–254

    Article  CAS  Google Scholar 

  116. Salciccioli M, Stamatakis M, Caratzoulas S, Vlachos DG (2011) A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem Eng Sci 66(19):4319–4355

    Article  CAS  Google Scholar 

  117. Zhao F, Liu C, Wang P, Huang S, Tian H (2013) First-principles investigations of the structural, electronic, and magnetic properties of Pt13-nNin clusters. J Alloys Compd 577:669–676

    Article  CAS  Google Scholar 

  118. Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt–Co and Pt–Fe alloys. J Am Chem Soc 126(14):4717–4725

    Article  CAS  PubMed  Google Scholar 

  119. Ferrin P, Kandoi S, Nilekar AU, Mavrikakis M (2012) Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: a DFT study. Surf Sci 606(7–8):679–689

    Article  CAS  Google Scholar 

  120. Qi XQ, Wei ZD, Li L, Ji MB, Li LL, Zhang Q, Xia MR, Chen SG, Yang LJ (2012) DFT study on interaction of hydrogen with Pd(111). Comput Theor Chem 979:96–101

    Article  CAS  Google Scholar 

  121. Menning CA, Hwu HH, Chen JG (2006) Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment. J Phys Chem B 110(31):15471–15477

    Article  CAS  PubMed  Google Scholar 

  122. Liu X, Tian D, Meng C (2012) DFT study on stability and structure of bimetallic AumPdn (N= 38, 55, 79, N=m+n, m / n 2:1 and 5:1) clusters. Comput Theor Chem 999:246–250

    Article  CAS  Google Scholar 

  123. Zhang J, Jin H, Sullivan MB, Lim FCH, Wu P (2009) Study of Pd–Au bimetallic catalysts for CO oxidation reaction by DFT calculations. Phys Chem Chem Phys 11(9):1441–1446

    Article  CAS  PubMed  Google Scholar 

  124. Yang Z, Wang J, Yu X (2010) The adsorption, diffusion and dissociation of O2 on Pt-skin Pt3Ni(111): a density functional theory study. Chem Phys Lett 499(1–3):83–88

    Article  CAS  Google Scholar 

  125. Lian X, Guo W, Liu F, Yang Y, Xiao P, Zhang Y, Tian WQ (2015) DFT studies on Pt3M (M = Pt, Ni, Mo, Ru, Pd, Rh) clusters for CO oxidation. Comput Mater Sci 96(Part A):237–245

    Article  CAS  Google Scholar 

  126. Guo W, Tian WQ, Lian X, Liu F, Zhou M, Xiao P, Zhang Y (2014) A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt7 and Pt7-xNix (x= 1, 2, 3) bimetallic clusters: a DFT study. Comput Theor Chem 1032:73–83

    Article  CAS  Google Scholar 

  127. Liu H, Wang B, Fan M, Henson N, Zhang Y, Towler BF, Harris HG (2013) Study on carbon deposition associated with catalytic CH4 reforming by using density functional theory. Fuel 113:712–718

    Article  CAS  Google Scholar 

  128. Wang S-G, Cao D-B, Li Y-W, Wang J, Jiao H (2009) Reactivity of surface OH in CH4 reforming reactions on Ni(111): a density functional theory calculation. Surf Sci 603(16):2600–2606

    Article  CAS  Google Scholar 

  129. Zhu Y-A, Chen D, Zhou X-G, Yuan W-K (2009) DFT studies of dry reforming of methane on Ni catalyst. Catal Today 148(3–4):260–267

    Article  CAS  Google Scholar 

  130. Zhu Y-A, Chen D, Zhou X-G, Yuan W-K (2003) Progress in research of the catalysts for high temperature combustion of methane. Prog Chem 15(3):242–248

    Google Scholar 

  131. Zi X, Liu L, Xue B, Dai H, He H (2011) The durability of alumina supported Pd catalysts for the combustion of methane in the presence of SO2. Catal Today 175(1):223–230

    Article  CAS  Google Scholar 

  132. Deshmukh SR, Vlachos DG (2007) A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals. Combust Flame 149(4):366–383

    Article  CAS  Google Scholar 

  133. Oh SH, Mitchell PJ, Siewert RM (1992) Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions. ACS Symp Ser 495:12–25

    Article  CAS  Google Scholar 

  134. Niu J, Ran J, Wang R, Du X (2015) Mechanism of methylene oxidation on Pt catalysts: a DFT study. Comput Theor Chem 1067:40–47

    Article  CAS  Google Scholar 

  135. Ersson A, Persson K, Adu IK, Järås SG (2006) A comparison between hexaaluminates and perovskites for catalytic combustion applications. Catal Today 112(1–4):157–160

    Article  CAS  Google Scholar 

  136. Cimino S, Lisi L, Pirone R, Russo G, Turco M (2000) Methane combustion on perovskites-based structured catalysts. Catal Today 59(1–2):19–31

    Article  CAS  Google Scholar 

  137. Jodłowski PJ, Jędrzejczyk RJ, Chlebda D, Gierada M, Łojewska J (2017) In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. J Catal 350:1–12

    Article  CAS  Google Scholar 

  138. Arya M, Mirzaei AA, Davarpanah AM, Barakati SM, Atashi H, Mohsenzadeh A, Bolton K (2018) DFT studies of hydrocarbon combustion on metal surfaces. J Mol Model 24(2):47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51506048, 51276207, U1504217, and 50876118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjie Chen or Weilong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Chen, J., Zhao, W. et al. Toward a microscopic understanding of the catalytic oxidation of methane on metal surfaces using density functional theory: a review. Theor Chem Acc 138, 38 (2019). https://doi.org/10.1007/s00214-019-2427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2427-0

Keywords

Navigation