Skip to main content

Advertisement

Log in

Giant values obtained for first hyperpolarizabilities of methyl orange: a DFT investigation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Advances in photonics and optoelectronics depend on proposing new materials with well-defined nonlinear optics properties. Based on the foundations of density functional theory, this work presents a systematic investigation of linear and nonlinear optical properties of methyl orange, a well-known azo dye. Structural changes from alkaline to acidic structures drastically boost all investigated properties. For instance, the material dipole polarizability starts from an isotropic condition (\(\alpha _{\mathrm{iso}}>\varDelta \alpha \)) to an anisotropic behavior (\(\alpha _{\mathrm{iso}}<\varDelta \alpha \)). The first hyperpolarizabilities are also strongly tuned varying from 18.9 \(\times\, 10^{-30}\) to 171.7 \(\times\, 10^{-30}\) esu. A careful analysis of frontier molecular orbitals indicates proper wide-bandgap semiconductor energy gap (3.22 eV) and associates the highest hyperpolarizabilities to the lowest energy gap, which means semiconductor molecules with intense nonlinear optical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zou LY, Zhang ZL, Ren AM, Ran XQ, Feng JK (2010) Theor Chem Acc 126:361

    Article  CAS  Google Scholar 

  2. Jin R, Ahmad I (2015) Theor Chem Acc 134:89

    Article  Google Scholar 

  3. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  4. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  5. Castellanos Aguila JE, Trejo-Duran M (2018) J Mol Liq 269:833

    Article  CAS  Google Scholar 

  6. Hinchliffe A, Soscún Machado HJ (1993) J Mol Struct 300:1

    Article  CAS  Google Scholar 

  7. Hinchliffe A, Mb HJS (1994) J Mol Struct 304:109

    Article  Google Scholar 

  8. Hinchliffe A, Soscún Machado HJ (1994) J Mol Struct 312:57

    Article  Google Scholar 

  9. Abou-Dobara MI, Omar NF, Diab MA, El-Sonbati AZ, Morgan SM, El-Mogazy MA (2018) J Cell Biochem 120:1667–1678

    Article  Google Scholar 

  10. Yazdanbakhsh M, Yousefi H, Mamaghani M, Moradi E, Rassa M, Pouramir H, Bagheri M (2012) J Mol Liq 169:21

    Article  CAS  Google Scholar 

  11. El-Ghamry HA, Fathalla SK, Gaber M (2018) Appl Organomet Chem 32:e4136

    Article  Google Scholar 

  12. Ono M, Wada Y, Wu Y, Nemori R, Jinbo Y, Wang H, Lo KM, Yamaguchi N, Brunkhorst B, Otomo H, Wesolowski J, Way JC, Itoh I, Gillies S, Chen LB (1997) Nat Biotechnol 15:343

    Article  CAS  Google Scholar 

  13. Poli G, Vicenzi E (2001) IDrugs Investig Drugs J 4:1293

    CAS  Google Scholar 

  14. Zhang Y, Gan Q, Wang S, Yang G (2012) J Inorg Organomet Polym Mater 22:48

    Article  Google Scholar 

  15. Tathe AB, Sekar N (2016) J Fluoresc 26:1279

    Article  CAS  Google Scholar 

  16. Bouchouit M, Elkouari Y, Messaadia L, Bouraiou A, Arroudj S, Bouacida S, Taboukhat S, Bouchouit K (2016) Opt Quantum Electron 48:178

    Article  Google Scholar 

  17. Del Nero J, de Araujo RE, Gomes ASL, de Melo CP (2005) J Chem Phys 122:104506

    Article  Google Scholar 

  18. Costa SC, Gester RM, Guimarães JR, Amazonas JG, Nero JD, Silva SB, Galembeck A (2008) Opt Mater 30:1432

    Article  CAS  Google Scholar 

  19. Ong SA, Min OM, Ho LN, Wong YS (2013) Environ Sci Pollut Res 20:3405

    Article  CAS  Google Scholar 

  20. Guo H, Yang F, Yuan J, Bai X (2015) J Iran Chem Soc 12:197

    Article  CAS  Google Scholar 

  21. Ong SA, Min OM, Ho LN, Wong YS (2012) Water Air Soil Pollut 223:5483

    Article  CAS  Google Scholar 

  22. Kanagaraj J, Velan TS, Mandal AB (2011) Clean Technol Environ Policy 14:565

    Article  Google Scholar 

  23. Lau Y, Wong Y, Teng T, Morad N, Rafatullah M, Ong S (2014) Chem Eng J 246:383

    Article  CAS  Google Scholar 

  24. Shahab S, Hajikolaee FH, Filippovich L, Darroudi M, Loiko VA, Kumar R, Borzehandani MY (2016) Dyes Pigment 129:9

    Article  CAS  Google Scholar 

  25. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  26. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  27. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  28. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  29. Blaudeau JP, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016

    Article  CAS  Google Scholar 

  30. Kleinman DA (1962) Phys Rev 126:1977

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2004) Gaussian 03 revision D01. Gaussian Inc., Wallingford

    Google Scholar 

  32. Maroulis G (2003) J Comput Chem 24:443

    Article  CAS  Google Scholar 

  33. Maroulis G (2008) J Chem Phys 129:044314

    Article  Google Scholar 

  34. Karamanis P, Maroulis G (2011) J Phys Org Chem 24:588

    Article  CAS  Google Scholar 

  35. Quertinmont J, Champagne B, Castet F, Hidalgo Cardenuto M (2015) J Phys Chem A 119:5496

    Article  CAS  Google Scholar 

  36. Cardenuto MH, Champagne B (2015) Phys Chem Chem Phys 17:23634

    Article  Google Scholar 

  37. Maroulis G (1999) J Chem Phys 111:583

    Article  CAS  Google Scholar 

  38. Maroulis G, Xenides D, Hohm U, Loose A (2001) J Chem Phys 115:7957

    Article  CAS  Google Scholar 

  39. Karamanis P, Maroulis G (2003) J Mol Struct THEOCHEM 621:157

    Article  CAS  Google Scholar 

  40. Karamanis P, Maroulis G (2003) Chem Phys Lett 376:403

    Article  CAS  Google Scholar 

  41. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195

    Article  CAS  Google Scholar 

  42. Chakraborti H (2016) Spectrochim Acta A Mol Biomol Spectrosc 153:226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Brazilian funding agencies [CAPES and CNPq under Project Universal (Grant 427527/2016-3)], which have suffering severe cuts in their budget, compromising the national science. RMG thanks to Raiane Sodré by scientific highlights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Gester.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenta, Â.C.M., Andrade-Filho, T., Manzoni, V. et al. Giant values obtained for first hyperpolarizabilities of methyl orange: a DFT investigation. Theor Chem Acc 138, 27 (2019). https://doi.org/10.1007/s00214-018-2406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2406-x

Keywords

Navigation