Skip to main content
Log in

Random phase approximation in projected oscillator orbitals

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The projected oscillator orbitals (pOOs) are localized virtual orbitals constructed by multiplying localized occupied orbitals by harmonics. Following a recent paper by Mussard and Ángyán (Theor Chem Acc 134:1, 2015), further developments of projected oscillator orbitals are shown, notably the equations for pOOs of general order as well as their overlaps are derived. The performance of these localized virtual orbitals is demonstrated up to third order. It is found that a good fraction of the aug-cc-pVQZ RPA correlation energy is recovered by use of a smaller number of pOOs. This is especially true where considering only the long-range correlation energy, which is important for the description of London dispersion forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mussard B, Ángyán JG (2015) Theor Chem Acc 134:1

    Article  CAS  Google Scholar 

  2. Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R (1995) Chem Phys Lett 240:283

    Article  CAS  Google Scholar 

  3. Whitten JL (1973) J Chem Phys 58:4496

    Article  CAS  Google Scholar 

  4. Roeggen I, Johansen T (2008) J Chem Phys 128:194107

    Article  CAS  Google Scholar 

  5. Beebe NHF, Linderberg J (1977) Int J Quantum Chem 12:683

    Article  CAS  Google Scholar 

  6. Høyvik I-M, Jansík B, Jørgensen P (2012) J Chem Phys 137:224114

    Article  Google Scholar 

  7. Aquilante F, Bondo-Pedersen T, Sánchez-de Merás A, Koch H (2006) J Chem Phys 25:174101

    Article  Google Scholar 

  8. Guo Y, Li W, Li S (2011) J Chem Phys 135:134107

    Article  Google Scholar 

  9. Jansík B, Høst S, Kristensen K, Jørgensen P (2011) J Chem Phys 134:194104

    Article  Google Scholar 

  10. Zhang C, Li S (2014) J Chem Phys 141:244106

    Article  Google Scholar 

  11. Subotnik JE, Dutoi AD, Head-Gordon M (2005) J Chem Phys 123:114108

    Article  Google Scholar 

  12. Heßelmann A (2016) J Chem Theory Comput 12:2720

    Article  Google Scholar 

  13. Maynau D, Evangelisti S, Guihéry N, Calzado CJ, Malrieu J-P (2002) J Chem Phys 116:10060

    Article  CAS  Google Scholar 

  14. Subotnik JE, Sodt A, Head-Gordon M (2006) J Chem Phys 125:074116

    Article  Google Scholar 

  15. Yang J, Kurashige Y, Manby FR, Chan GKL (2011) J Chem Phys 134:044123

    Article  Google Scholar 

  16. Yang J, Chan GKL, Manby ER, Schütz M, Werner H-J (2012) J Chem Phys 136:144105

    Article  Google Scholar 

  17. Christiansen O, Manninen P, Jørgensen P, Olsen J (2006) J Chem Phys 124:084103

    Article  Google Scholar 

  18. Kàllay M (2015) J Chem Phys 142:204105

    Article  Google Scholar 

  19. Heßelmann A (2017) J Chem Phys 146:174110

    Article  Google Scholar 

  20. Surján PR (2005) Chem Phys Lett 406:318

    Article  Google Scholar 

  21. Pulay P (1983) Chem Phys Lett 100:151

    Article  CAS  Google Scholar 

  22. Pulay P, Saebø S (1986) Theor Chim Acta 69:357

    Article  CAS  Google Scholar 

  23. Boughton JW, Pulay P (1993) J Comput Chem 14:736

    Article  CAS  Google Scholar 

  24. Foster JM, Boys SF (1960a) Rev Mod Phys 32:300

    Article  CAS  Google Scholar 

  25. Foster JM, Boys SF (1960b) Rev Mod Phys 32:303

    Article  CAS  Google Scholar 

  26. Boys SF (1966) In: Löwdin PO (ed) Quantum theory of atoms, molecules, the solid state, a tribute to John C. Slater. Academic Press, New York, pp 253–262

    Google Scholar 

  27. Knowles PJ, Schütz M, Werner H-J (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry. John von Neumann Institute for Computing, Jülich

    Google Scholar 

  28. Kirkwood JG (1932) Phys Z 33:57

    CAS  Google Scholar 

  29. Pople JA, Schofield P (1957) Philos Mag 2:591

    Article  CAS  Google Scholar 

  30. Karplus M, Kolker HJ (1963a) J Chem Phys 39:1493

    Article  CAS  Google Scholar 

  31. Karplus M, Kolker HJ (1963b) J Chem Phys 39:2997

    Article  CAS  Google Scholar 

  32. Rivail J-L, Cartier A (1978) Mol Phys 36:1085

    Article  CAS  Google Scholar 

  33. Rivail J-L, Cartier A (1979) Chem Phys Lett 61:469

    Article  CAS  Google Scholar 

  34. Sadlej AJ, Jaszunski M (1971) Mol Phys 22:761

    Article  CAS  Google Scholar 

  35. Johnson ER, Becke AD (2005) J Chem Phys 123:024101

    Article  Google Scholar 

  36. Johnson ER, Mackie ID, DiLabio GA (2009) J Phys Org Chem 22:1127

    Article  CAS  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  38. Grimme S (2011) WIREs Comput Mol Sci 1:211

    Article  CAS  Google Scholar 

  39. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

    Article  Google Scholar 

  40. DiStasio RA Jr, Gobre VV, Tkatchenko A (2014) J Phys Condens Matter 26:213202

    Article  Google Scholar 

  41. Reilly AM, Tkatchenko A (2015) Chem Sci 6:3289

    Article  CAS  Google Scholar 

  42. Toulouse J, Gerber IC, Jansen G, Savin A, Ángyán JG (2009) Phys Rev Lett 102:096404

    Article  Google Scholar 

  43. Zhu W, Toulouse J, Savin A, Ángyán JG (2010) J Chem Phys 132:244108

    Article  Google Scholar 

  44. Toulouse J, Zhu W, Savin A, Jansen G, Ángyán JG (2011) J Chem Phys 135:084119

    Article  Google Scholar 

  45. Ángyán JG, Liu R-F, Toulouse J, Jansen G (2011) J Chem Theory Comput 7:3116

    Article  Google Scholar 

  46. Franck O, Mussard B, Luppi E, Toulouse J (2015) J Chem Phys 142:074107

    Article  Google Scholar 

  47. Kapuy E, Kozmutza C (1991) J Chem Phys 94:5565

    Article  CAS  Google Scholar 

  48. Saebø S, Tong W, Pulay P (1993) J Chem Phys 98:2170

    Article  Google Scholar 

  49. Hetzer G, Pulay P, Werner H-J (1998) Chem Phys Lett 290:143

    Article  CAS  Google Scholar 

  50. Usvyat D, Maschio L, Manby FR, Casassa S, Schütz M, Pisani C (2007) Phys Rev B 76:075102

    Article  Google Scholar 

  51. Chermak E, Mussard B, Ángyán JG, Reinhardt P (2012) Chem Phys Lett 550:162

    Article  CAS  Google Scholar 

  52. Resta R (2006) J Chem Phys 124:104104

    Article  Google Scholar 

  53. Toulouse J, Rebolini E, Gould T, Dobson JF, Seal P, Ángyán JG (2013) J Chem Phys 138:194106

    Article  Google Scholar 

  54. Mussard B, Reinhardt P, Ángyán JG, Toulouse J (2015) J Chem Phys 142:154123

    Article  Google Scholar 

  55. Mussard B, Rocca D, Jansen G, Ángyán JG (2016) J Chem Theory Comput 12:2191

    Article  CAS  Google Scholar 

  56. Mussard B (2017) J Toulouse Mol Phys 115:161

    Article  CAS  Google Scholar 

  57. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M (2010) WIREs Comput Mol Sci 2:242–253

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted while in the University of Colorado at Boulder and hence was supported through the startup package of Sandeep Sharma. The author would like to thank the late János G. Ángyán for the initial insightful discussions on this subject and on many others. János was a great mentor to me and he is missed very much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Mussard.

Additional information

Published as part of the special collection of articles In Memoriam of János Ángyán.

Appendix

Appendix

1.1 Relations between pOOs

The natural expression for a pOO of order n is given by the binomial theorem:

$$\begin{aligned} \vert i_{\alpha \dots \eta } \rangle&={\hat{P}}\, ({\hat{r}}_\alpha -D^i_\alpha )\dots ({\hat{r}}_\eta -D^i_\eta )\vert i \rangle = \sum _{k=1}^{n} A^n_k \end{aligned}$$
(11)

where \(A^n_k\) is defined for convenience:

$$\begin{aligned} A^n_k =(-1)^{n-k}\underbrace{(D^i\dots D^i)}_{n-k} {\hat{P}}\, \underbrace{\phantom {()}{\hat{r}}\dots {\hat{r}}}_{k}\vert i \rangle \end{aligned}$$
(12)

and actually contains \({n \atopwithdelims ()k}\) repetitions with different assignations of the indices \(\alpha \dots \eta \). For each of those repetitions, a different set of k indices among \(\alpha \dots \eta \) is assigned to the k position operators and the remaining indices are given to the vector components \(D^i\). For example, consider a pOO \(\vert i_{\alpha \beta \gamma } \rangle \) of order 3. The term \(A^3_1\) will be:

$$\begin{aligned} A^3_1{}^{\phantom {\prime \prime }}&=(D^i_\alpha D^i_\beta ) {\hat{P}}\,{\hat{r}}_\gamma \vert i \rangle \\ A^3_1{}^{\prime \phantom {\prime }}&=(D^i_\alpha D^i_\gamma ) {\hat{P}}\,{\hat{r}}_\beta \vert i \rangle \\ A^3_1{}^{\prime \prime }&=(D^i_\beta D^i_\gamma ) {\hat{P}}\,{\hat{r}}_\alpha \vert i \rangle \end{aligned}$$

i.e. it contains \({3 \atopwithdelims ()1}=3\) repetitions with different assignations of the indices \(\alpha \), \(\beta \) and \(\gamma \).

We seek to prove Eq. (5), which amounts with the current notations to:

$$\begin{aligned} \vert i_{\alpha \dots \eta } \rangle =A^n_n -\sum _{k=1}^{n-1} \underbrace{\phantom {\vert nk \rangle }D^i \dots D^i}_{n-k} \underbrace{\vert K \rangle }_{\begin{array}{c} \text {pOO of}\\ {\text {order }}k \end{array}} \end{aligned}$$
(13)

where the same repetitions with different assignations of the indices \(\alpha \dots \eta \) are found now for each terms of the sum. We begin by inserting in Eq. (13) the binomial expression of Eq. (11) for the pOO \(\vert K \rangle \):

$$\begin{aligned} \vert i_{\alpha \dots \eta } \rangle&=A^n_n -\sum _{k=1}^{n-1} \underbrace{(D^i\dots D^i)}_{n-k} \sum _{m=1}^k A_m^k \end{aligned}$$
(14)

where we can rewrite the term in the sums using:

$$\begin{aligned}&\underbrace{(D^i\dots D^i)}_{n-k} A_m^k \nonumber \\&\quad = (-1)^{k-m} \underbrace{(D^i\dots D^i)}_{n-k} \underbrace{(D^i\dots D^i)}_{k-m} {\hat{P}}\, \underbrace{\phantom {(}{\hat{r}}\dots {\hat{r}}}_{m}\vert i \rangle \nonumber \\&\quad =(-1)^{k+n}A^n_m \end{aligned}$$
(15)

This yields:

$$\begin{aligned} \vert i_{\alpha \dots \eta } \rangle&=A^n_n +\sum _{k=1}^{n-1} \sum _{m=1}^k (-1)^{k+(n-1)} A^n_m \nonumber \\&=A^n_n +\sum _{m=1}^{n-1} \left[ \sum _{k=m}^{n-1} (-1)^{k+(n-1)}\right] A^n_m \end{aligned}$$
(16)

where in the last line the double summation was simply rearranged (think of summations over lines versus over columns of a matrix whose columns are composed of \(A^n_m\)).

In terms of assignations of the indices \(\alpha \dots \eta \), in Eq. (15) there is \({n \atopwithdelims ()k}\) ways to assign indices to the first string of \(n-k\)\(D^i\)” and \({k \atopwithdelims ()m}\) ways to assign indices to the second string of \(k-m\)\(D^i\)”. This hence becomes a combinatorial problem, and recovering Eq. (11) from Eq. (16) boils down to proving that:

$$\begin{aligned} \sum _{k=m}^{n-1} (-1)^{k+(n-1)} {n\atopwithdelims ()k}{k\atopwithdelims ()m}={n\atopwithdelims ()m} \end{aligned}$$
(17)

which should be the number of repeated occurrences of the \(A^n_m\) term with different indices in Eq. (16). This amounts to prove that:

$$\begin{aligned} \sum _{k=m}^{n-1} (-1)^{k+(n-1)} \frac{{n\atopwithdelims ()k}{k\atopwithdelims ()m}}{{n\atopwithdelims ()m}}=1 \end{aligned}$$
(18)

where, manipulating the fraction, the expression to study is:

$$\begin{aligned}&\sum _{k=m}^{n-1} (-1)^{k+(n-1)} {n-m\atopwithdelims ()k-m} \nonumber \\&\quad =\sum _{k=m}^{n} (-1)^{k+(n-1)} {n-m\atopwithdelims ()k-m} - (-1)^{-1} {n-m\atopwithdelims ()n-m} \nonumber \\&\quad =\left\{ \sum _{k^\prime =0}^{n-m} (-1)^{k^\prime } {n-m\atopwithdelims ()k^\prime }\right\} (-1)^{n-m+1} + 1 \nonumber \\&\quad =1 \end{aligned}$$
(19)

where the first step consists simply in adding and subtracting the n-th element of the sum, the second step is a change of the dummy index of the sum and the final step is a realization that the expression in curvy brackets is the binomial theorem for \((1+(-1))^{n-m}=0\). This proves Eq. (5).

1.2 Workflow

Although in our original paper [1] relations to construct all ingredients for the pOOs using solely data from the occupied space are presented (this is the purpose of the projected schemes), for the clarity of the proof-of-concept calculations in this paper, the \(N_{\text {pOO}}\times N_{\text {vir}}\) matrix \(\mathbf{V}\) to transform virtual orbitals to pOOs is introduced:

$$\begin{aligned} \vert i_{\alpha \dots \eta } \rangle =\sum _a^{N_{\text {vir}}} V_{i_{\alpha \dots \eta } a} \vert a \rangle \end{aligned}$$
(20)

We assume here that the pOOs can be expanded in the virtual basis, i.e. that the pOO space is a subspace of the virtual space. This should be more rigourously checked in later work. For example, the \(\mathbf{V}\) matrix corresponding to the first-order pOO reads:

$$\begin{aligned} V^{(1)}_{i_\alpha a}=\langle i \vert {\hat{r}}_\alpha \vert a \rangle \end{aligned}$$
(21)

and, given Eq. (5), repeated in Appendix as Eq. (13), the \(\mathbf{V}\) matrix corresponding to a N-th order pOO simply reads:

$$\begin{aligned} V^{(N)}_{i_{\alpha \dots \eta } a}=\langle i \vert {\hat{r}}_\alpha \dots {\hat{r}}_\eta \vert a \rangle -\sum _{k=1}^{n-1} \underbrace{\phantom {V_a}D^i\dots D^i}_{n-k} \underbrace{V^{(K)}_{\dots a}}_{\begin{array}{c} {\text {matrix for}}\\ \hbox { order}\ k\\ \text {pOO} \end{array}} \end{aligned}$$
(22)

The overlap between pOOs is \(\mathbf{S}=\mathbf{V}\mathbf{V}^\dagger \) and the pseudo-canonical basis is obtained by solving the generalized eigenvalue equation

$$\begin{aligned} \mathbf{f}\mathbf{X}=\mathbf{S}\mathbf{X}\pmb \epsilon \end{aligned}$$
(23)

Because of linear dependencies built in the construction of the pOOs, the overlap matrix \(\mathbf{S}\) is in general only positive semidefinite instead of positive definite. Hence the pseudo-canonical basis of effective size \(N_{\text {eff}}\le N_{\text {pOO}}\) can alternatively by found with the \(N_{\text {pOO}}\times N_{\text {eff}}\) matrix \(\mathbf{X}\) that simultaneously diagonalizes \(\mathbf{f}\) and \(\mathbf{S}\).

From these relations, one can then construct from the \(N_{\text {AO}}\times N_{\text {vir}}\) transformation matrix \(\mathbf{C}\) the following sequential transformation matrices:

$$\begin{aligned} \underbrace{\mathbf{C}}_{\text {AO}\rightarrow {\text {vir}}} \rightarrow \underbrace{\mathbf{C}\mathbf{V}^\dagger }_{\text {AO}\rightarrow {\text {pOO}}} \rightarrow \underbrace{\mathbf{C}\mathbf{V}^\dagger \mathbf{X}}_{\text {AO}\rightarrow \text {pseudo-cano}} \end{aligned}$$
(24)

to easily either try out the pOOs, draw them, or calculate energies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mussard, B. Random phase approximation in projected oscillator orbitals. Theor Chem Acc 137, 165 (2018). https://doi.org/10.1007/s00214-018-2358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2358-1

Keywords

Navigation