Skip to main content
Log in

Computational characterization of the herbicide metolachlor and its mono-hydroxylated photodegradation products

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Electronic structure calculations have been performed for the characterization of the different conformers of the herbicide metolachlor (MC), (2-chloro-N-(2-methyl-6-ethylphenyl)-N-(2-methoxy-1-methylethyl) acetamide), the radical structures obtained through the photo chemical breaking of the C–Cl bond and the most important, experimentally identified mono-hydroxylated photo-fragmentation products. Only the S-metolachlor enantiomer that shows herbicide activity was studied. The goal of the study has been twofold. The first target has been the conformational analysis of the neutral molecule and the corresponding radical. Ten different conformers were identified for the S-metolachlor enantiomer, all of them exhibiting a near perpendicular disposition of the amidyl and the phenyl planes. They were classified into two families of minima depending on the orientation of the carbonyl group (either cis or trans with respect to the phenyl ring). All the minima in the S-cis family were found to lie higher than those in the S-trans family. The free energy of isomerization between the lowest minima of each family was found to be \( \Delta G_{298}^{0} \) = 6.2 kcal/mol, while the isomerization barrier around the amide C–N bond causing atropisomerism was calculated to be 34.9 kcal/mol (in good agreement with the experimental energy of activation, 36.9 ± 3 kcal/mol) [45]. The second part of the work is devoted to the computational characterization of the most important isomeric forms of the metolachlor radical and the major photodegradation mono-hydroxylated metabolites formed through the coupling of the metolachlor radical with OH. Reaction enthalpies and free energies for the various hydroxylation pathways have been calculated. Based on their order, the relative significance of the various hydroxylation channels is justified and the preference in the phenyl ring hydroxylation is established. The lowest exothermicity value determined, − 5.8 kcal/mol at the M06/6-31 + G(d,p) level, corresponds to phenyl group hydroxylation at the p-position with regard to C–N bond, in excellent agreement with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barbash JE, Thelin GP, Kolpin DW, Gilliom R (1999) Distribution of major herbicides in ground water of the United States. U.S. Geological Survey, Water-Resources Investigations Report 98-4245, Sacramento, CA

  2. United States Environmental Protection Agency (2017) Pesticides. https://www.epa.gov/pesticides

  3. Burrows HD, L Canle M, Santaballa JA, Steenken S (2002) Reaction pathways and Photodegradation of pesticides. J Photochem Photobiol B Biol 67:71–108

    Article  CAS  Google Scholar 

  4. Reade JPH, Cobb AH (2002) Herbicides: mode of action and metabolism. In: Naylor REL (ed) Weed management handbook. Blackwell Science, Oxford

    Google Scholar 

  5. Böger P (2003) Mode of action of chloroacetamides and functionally related compounds. J Pest Sci 28:324–329

    Article  Google Scholar 

  6. Benitez FJ, Acero JL, Real FJ, Maya C (2004) Modeling of photooxidation of acetamide herbicides in natural waters by UV radiation and the combinations UV/H2O2 and UV/O3. J Chem Technol Biotechnol 79:987–997

    Article  CAS  Google Scholar 

  7. Carlson DL, Than KD, Roberts AL (2006) Acid and base-catalyzed hydrolysis of chloroacetamide herbicides. J Agric Food Chem 54:4740–4750

    Article  CAS  Google Scholar 

  8. Chesters G, Simsiman GV, Levy J, Alhajjar BI, Riyadh N, Fathulla RN, Harkin JM (1989) Environmental fate of alachlor and metolachlor. Rev Environ Contamin Toxicol 110:1–74

    CAS  Google Scholar 

  9. Aubertot JN, Barbier JM, Carpentier A, Gril JN, Guichard L, Lucas P, Savary S, Voltz M (2005) Pesticides, agriculture et environnement. Réduire l’ utilisation des pesticides et en limiter les impacts environnementaux. Rapport d’Expertise scientifique collective Inra-Cemagref

  10. Li Z, Jennings A (2017) Worldwide regulations of standard values of pesticides for human health risk control: a Review. Int J Environ Res Public Health 14:826–830

    Article  Google Scholar 

  11. Aga DS, Heberle S, Rentsch D, Hany R, Müller SR (1999) Sulfonic and oxanilic acid metabolites of acetanilide herbicides: separation of diastereomers and enantiomers by capillary zone electrophoresis and identification by 1H NMR Spectroscopy. Environ Sci Technol 33:3462–3468

    Article  CAS  Google Scholar 

  12. Kant Kabler A, Chen S (2006) Determination of the 1’S and 1’R diastereomers of metolachlor and S-metolachlor in water by chiral liquid chromatography-mass spectrometry (LC/MS/Ms). J Agric Food Chem 54:6153–6158

    Article  Google Scholar 

  13. Klein C, Schneider RJ, Meyer MT, Aga DS (2006) Enantiomeric separation of metolachlor and its metabolites using LC–MS and CZE. Chemosphere 62:1591–1599

    Article  CAS  Google Scholar 

  14. Aboul Eish MYZ, Wells MJM (2008) Monitoring stereoselective degradation of metolachlor in a constructed wetland: use of statistically valid enantiomeric and diastereomeric fractions as opposed to ratios. J Chromate Sci 46:269–275

    Article  CAS  Google Scholar 

  15. Ng HYF, Gaynor JD, Tan CS, Drury CF (1995) Dissipation and loss of atrazine and metolachlor in surface and subsurface drain water: a case study. Wat Res 29:2309–2317

    Article  CAS  Google Scholar 

  16. O’Connell PJ, Harms CT, Allen JRF (1998) Metolachlor, S-metolachlor and their role within sustainable weed-management. Crop Prot 17:207–212

    Article  Google Scholar 

  17. Fava L, Bottoni P, Crobe A, Funari E (2000) Leaching properties of some degradation products of alachlor and metolachlor. Chemosphere 41:1503–1508

    Article  CAS  Google Scholar 

  18. Accinelli C, Dinelli G, Vicari A (2001) Atrazine and metolachlor degradation in subsoils. Biol Fertile Soils 33:495–500

    Article  CAS  Google Scholar 

  19. Novak SM, Portal JM, Schiavon M (2001) Effects of soil type upon metolachlor losses in subsurface drainage. Chemosphere 42:235–244

    Article  CAS  Google Scholar 

  20. Sanyal D, Kulshrestha G (2002) Metabolism of metolachlor by fungal cultures. J Agric Food Chem 50:499–505

    Article  CAS  Google Scholar 

  21. Rice PA, Anderson TA, Coats JR (2002) Degradation and persistence of metolachlor in soil: effects of concentration, soil, moisture, soil depth and sterilization. Environ Toxic Chem 21:2640–2645

    Article  CAS  Google Scholar 

  22. Mersie W, McNamee C, Seybold C, Wu J, Tierney D (2004) Degradation of metolachlor in bare and vegetated soils and simulated water-sediment systems. Environ Toxic Chem 23:2627–2632

    Article  CAS  Google Scholar 

  23. Caracciolo AB, Giuliano G, Grenni P, Guzzella L, Pozzoni F, Bottoni P, Fava L, Crobe A, Orrù M, Funari E (2005) Degradation and leaching of the herbicide metolachlor and diuron: a case study in the area of Northern Italy. Environ Pollut 134:525–534

    Article  Google Scholar 

  24. White PM Jr, Potter TL (2010) Metolachlor and chlorothalonil dissipation in gypsum amended soil. J Environ Sci Health B 45:728–737

    Article  CAS  Google Scholar 

  25. Vryzas Z, Papadakis EN, Oriakli K, Moysiadis TP, Papadopoulou-Mourkidou E (2012) Biotransformation of atrazine and metolachlor within soil profile and changes in microbial communities. Chemosphere 89:1330–1338

    Article  CAS  Google Scholar 

  26. Prueger JH, Alfieri J, Gish TJ, Kustas WP, Daughtry CST, Hatfield JL, McKee LG (2017) Multi-year measurements of field-scale metolachlor volatilization. Water Air Soil Pollut 228:84–92

    Article  Google Scholar 

  27. Kochany J, Maguire JR (1994) Sunlight photodegradation of metolachlor in water. J Agric Food Chem 42:406–412

    Article  CAS  Google Scholar 

  28. Pignatello JJ, Sun Y (1995) Complete oxidation of metolachlor and methyl parathion in water by the photoassisted fenton reaction. Wat Res 29:1837–1844

    Article  CAS  Google Scholar 

  29. Mathew R, Khan SU (1996) Photodegradation of metolachlor in water in the presence of soil mineral and organic constituents. J Agric Food Chem 44:3996–4000

    Article  CAS  Google Scholar 

  30. Lin YJ, Karuppiah M, Shaw A, Gupta G (1999) Effect of simulated sunlight on atrazine and metolachlor toxicity of surface waters. Ecotoxixol Environ Saf 43:35–37

    Article  CAS  Google Scholar 

  31. Wilson RI, Mabury SA (2000) Photodegradation of metolachlor: isolation, identification and quantification of monochloroacetic acid. J Agric Food Chem 48:944–950

    Article  CAS  Google Scholar 

  32. Dinelli G, Accinelli C, Vicari A, Catizone P (2000) Comparison of the persistence of atrazine and metolachlor under field and laboratory conditions. J Agric Food Chem 48:3037–3043

    Article  CAS  Google Scholar 

  33. Sakkas VA, Arabatzis IM, Konstantinou IK, Dimou AD, Albanis TA, Falaras P (2004) Metolachlor photocatalytic degradation using TiO2 photocatalysts. Appl Catal B Environ 49:195–205

    Article  CAS  Google Scholar 

  34. Dimou AD, Sakkas VA, Albanis TA (2005) Metolachlor photodegradation study in aqueous media under natural and simulated solar irradiation. J Agric Food Chem 53:694–701

    Article  CAS  Google Scholar 

  35. Wu C, Shemer H, Linden KG (2007) Photodegradation of metolachlor applying UV and UV/H2O2. J Agric Food Chem 55:4059–4065

    Article  CAS  Google Scholar 

  36. Hladik ML, Bouwer EJ, Roberts AL (2008) Neutral degradates of chloroacetamide herbicides: occurrence in drinking water and removal during conventional water treatment. Water Res 42:4905–4914

    Article  CAS  Google Scholar 

  37. Goulden PH, Coffinet S, Genty C, Bourcier S, Sablier M, Bouchonnet S (2011) Investigation of the unusual behavior of metolachlor under chemical ionization in a hybrid 3d ion trap mass spectrometer. Anal Chem 83:7587–7590

    Article  CAS  Google Scholar 

  38. Bouchonnet S, Kinani S, Souissi Y, Bourcier S, Sablier M, Roche P, Boireau V, Ingrand V (2011) Investigation of the dissociation of metolachlor, acetochlor and alachlor under electron ionization—application to the identification of ozonation products. Rapid Commun Mass Spectrom 25:93–103

    Article  CAS  Google Scholar 

  39. Restivo J, Orfao JJM, Armenise S, Garcia-Bordeje E, Pereira MFR (2012) Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. J Hazard Mater 239–240:249–256

    Article  Google Scholar 

  40. Coffinet S, Rifai A, Genty C, Souissi Y, Bourcier S, Sablier M, Bouchonnet S (2012) Characterization of the photodegradation products of metolachlor: structural elucidation, potential toxicity and persistence. J Mass Spectrom 47:1582–1593

    Article  CAS  Google Scholar 

  41. Souissi Y, Bouchonnet S, Bourcier S, Kusk KO, Henrik MS, Andersen R (2013) Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water. Sci Total Environ 458–460:527–634

    Article  Google Scholar 

  42. Otero R, Esquivel D, Ulibarri MA, Romero-Salguero FJ, Van der Voort P, Fernandez JM (2014) Mesoporous phenolic resin and mesoporous carbon for the removal of s-metolachlor and bentazon herbicides. Chem Eng J 251:92–101

    Article  CAS  Google Scholar 

  43. Nicol E, Genty C, Bouchonnet S, Bourcier S (2015) Structural elucidation of metolachlor photoproducts by liquid chromatography/high-resolution tandem mass spectrometry. Rapid Commun Mass Spectrom 29:2279–2286

    Article  CAS  Google Scholar 

  44. Orge CA, Pereira MFR, Faria JL (2017) Photocatalytic-assisted ozone degradation of metolachlor aqueous solution. Chem Eng J 318:247–253

    Article  CAS  Google Scholar 

  45. Moser H, Rihs G, Sauter H (1982) Der Einfluß von Atropisomerie und chiralem Zentrum auf die biologische Aktivität des Metolachlor. Z Naturforsch 37b:451–462

    Article  CAS  Google Scholar 

  46. Blaser HU (2002) The chiral switch of (S)-Metolachlor: a personal account of an industrial Odyssey in asymmetric catalysis. Adv Synth Catal 344:17–31

    Article  CAS  Google Scholar 

  47. Machinori O (1983) Recent advances in atropisomerism. In: Allinger NL, Eliel EL, Wilen SH (eds) Topics in stereochemistry. Wiley, Hoboken, pp 1–82

    Google Scholar 

  48. Alkorta I, Elguero J, Roussel C, Vanthuyne N, Patrick Piras P (2012) Atropisomerism and axial chirality in heteroaromatic compounds. Adv Heter Chem 105:1–188

    Article  CAS  Google Scholar 

  49. Koch W, Holthausen MC (2001) A Chemist’s guide to density functional theory. Wiley, Hoboken

    Book  Google Scholar 

  50. Zhao Y, Truhlar DG (2006) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  Google Scholar 

  51. Walker M, Harvey AJ, Sen A, Dessent CE (2013) Performance of M06, M06-2X and M06-HF density functionals for conformationally flexible atomic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117:12590–12600 (and references therein)

    Article  CAS  Google Scholar 

  52. Montgomery JA Jr, Frisch MJ, Ochterski JW, Peterson GA (2000) A complete basis set model chemistry, VII. Use of the minimum population localization method. J Chem Phys 112:6532–6542

    Article  CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda KR, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Straroverov VN, Kobayashi R, Normand J, Raghavashari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo VC, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford, CT

    Google Scholar 

  54. Pilling MJ (1996) Radical-radical reactions. Ann Rev Phys Chem 47:81–108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ONV thanks economic support for this project from Pedeciba and UdelaR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agnie M. Kosmas or Oscar N. Ventura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salta, Z., Kosmas, A.M. & Ventura, O.N. Computational characterization of the herbicide metolachlor and its mono-hydroxylated photodegradation products. Theor Chem Acc 137, 151 (2018). https://doi.org/10.1007/s00214-018-2353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2353-6

Keywords

Navigation