Skip to main content

Advertisement

Log in

Reactivity of chlorogenic acid toward hydroxyl and methyl peroxy radicals relative to trolox in nonpolar media

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The quantum mechanics-based test for overall free-radical scavenging activity was applied for the investigation of antioxidative capacity of chlorogenic acid (5-O-caffeoylquinic acid, 5CQA) relative to trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, Tx) as a reference compound. Hydrogen atom transfer (HAT), radical adduct formation (RAF), electron transfer (ET), and proton loss (PL) reactions of 5CQA and Tx with HO and CH3OO radicals in benzene and pentyl ethanoate were examined. For this purpose, two theoretical models, M06-2X/6-311++G(d,p) in combination with the CPCM solvation model, and M05-2X/6-311++G(d,p) in combination with the SMD solvation model, were employed. It was found that M05-2X/6-311++G(d,p)—SMD failed to evaluate the influence of pentyl ethanoate, whereas M06-2X—CPCM in benzene and pentyl ethanoate and M05-2X—SMD in benzene proved to be operative and showed similar trends. Both compounds can react with HO via HAT and RAF mechanisms, whereas HAT is the only reaction pathway with CH3OO. 5CQA is more efficient scavenger of HO than Tx, but less efficient scavenger of CH3OO. Less reactive free radicals are more suitable for the determination of antioxidative activity of a compound relative to Tx. Highly reactive free radicals need to be included in the investigation of all potential reaction pathways of the compound, in which case the results from different approaches can be inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    Article  PubMed  Google Scholar 

  2. Liu Z (2010) Chemical methods to evaluate antioxidant ability. Chem Rev 110:5675–5691

    Article  CAS  PubMed  Google Scholar 

  3. Hoye AT, Davoren JE, Wipf P et al (2008) Targeting mitochondria. Acc Chem Res 41:87–97

    Article  CAS  PubMed  Google Scholar 

  4. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001

    Article  CAS  PubMed  Google Scholar 

  5. Hertog MG, Sweetnam PM, Fehily AM et al (1997) Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr 65:1489–1494

    Article  CAS  PubMed  Google Scholar 

  6. Rimm EB, Katan MB, Ascherio A et al (1996) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125:384–389

    Article  CAS  PubMed  Google Scholar 

  7. Xu JG, Hu QP, Liu Y (2012) Antioxidant and DNA-protective activities of chlorogenic acid isomers. J Agric Food Chem 60:11625–11630

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Wang J, Yang N (2007) Chemiluminescent determination of chlorogenic acid in fruits. Food Chem 102:422–426

    Article  CAS  Google Scholar 

  9. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  10. Frankel EN, Meyer AS (2000) The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80:1925–1941

    Article  CAS  Google Scholar 

  11. Antolovich M, Prenzler PD, Patsalides E et al (2002) Methods for testing antioxidant activity. Analyst 127:183–198

    Article  CAS  PubMed  Google Scholar 

  12. Huang D, Boxin OU, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  PubMed  Google Scholar 

  13. Halliwell B, Aeschbach R, Löliger J, Aruoma OI (1995) The characterization of antioxidants. Food Chem Toxicol 33:601–617

    Article  CAS  PubMed  Google Scholar 

  14. Galano A, Alvarez-Idaboy JR (2013) A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. J Comput Chem 34:2430–2445

    Article  CAS  PubMed  Google Scholar 

  15. Marković S, Tošović J (2016) Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids. Food Chem 210:585–592

    Article  CAS  PubMed  Google Scholar 

  16. Tošović J, Marković S (2016) Structural and antioxidative features of chlorogenic acid. Croat Chem Acta 89:535–541

    Article  Google Scholar 

  17. Tošović J, Marković S, Dimitrić Marković JM et al (2017) Antioxidative mechanisms in chlorogenic acid. Food Chem 237:390–398

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Xiao H, Zheng J, Liang G (2015) Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. PLoS ONE 10:1–20

    Google Scholar 

  19. Uranga JG, Podio NS, Wunderlin DA, Santiago AN (2016) Theoretical and experimental study of the antioxidant behaviors of 5-O-caffeoylquinic, quinic and caffeic acids based on electronic and structural properties. ChemistrySelect 1:4113–4120

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB et al (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  21. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  22. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    Article  CAS  PubMed  Google Scholar 

  23. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  CAS  PubMed  Google Scholar 

  25. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  26. Redžepović I, Marković S, Tošović J (2017) Antioxidative activity of caffeic acid—mechanistic DFT study. Kragujev J Sci 39:109–122

    Article  Google Scholar 

  27. Iuga C, Alvarez-Idaboy JR, Russo N (2012) Antioxidant activity of trans -resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study. J Org Chem 77:3868–3877

    Article  CAS  PubMed  Google Scholar 

  28. Markovic Z, Amic D, Milenkovic D et al (2013) Examination of the chemical behavior of the quercetin radical cation towards some bases. Phys Chem Chem Phys 15:7370–7378

    Article  CAS  PubMed  Google Scholar 

  29. Medina ME, Iuga C, Alvarez-Idaboy JR (2014) Antioxidant activity of fraxetin and its regeneration in aqueous media. A density functional theory study. RSC Adv 4:52920–52932

    Article  CAS  Google Scholar 

  30. Amić A, Lučić B, Stepanić V et al (2017) Free radical scavenging potency of quercetin catecholic colonic metabolites: thermodynamics of 2H +/2e − processes. Food Chem 218:144–151

    Article  CAS  PubMed  Google Scholar 

  31. Milenković D, Đorović J, Petrović V et al (2017) Hydrogen atom transfer versus proton coupled electron transfer mechanism of gallic acid with different peroxy radicals. React Kinet Mech Catal 123:215–230

    Article  CAS  Google Scholar 

  32. Okuno Y (1997) Theoretical investigation of the mechanism of the Baeyer–Villiger reaction in nonpolar solvents. Eur J Chem 3:212–218

    Article  CAS  Google Scholar 

  33. Alberty RA (1960) The foundations of chemical kinetics (Benson, Sidney W.). J Chem Educ 37:660

    Article  Google Scholar 

  34. Marković Z, Tošović J, Milenković D, Marković S (2016) Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents. Comput Theor Chem 1077:11–17

    Article  CAS  Google Scholar 

  35. Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  36. Duncan WT, Bell RL, Truong TN (1998) TheRate: program for ab initio direct dynamics calculations of thermal and vibrational-state-selected rate constants. J Comput Chem 19:1039–1052

    Article  CAS  Google Scholar 

  37. Fernández-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Modeling the kinetics of bimolecular reactions. Chem Rev 106:4518–4584

    Article  CAS  PubMed  Google Scholar 

  38. Alberto ME, Russo N, Grand A, Galano A (2013) A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Phys Chem Chem Phys 15:4642

    Article  CAS  PubMed  Google Scholar 

  39. Medina ME, Iuga C, Álvarez-Idaboy JR (2013) Antioxidant activity of propyl gallate in aqueous and lipid media: a theoretical study. Phys Chem Chem Phys 15:13137

    Article  CAS  PubMed  Google Scholar 

  40. Marino T, Russo N, Galano A (2016) A deeper insight on the radical scavenger activity of two simple coumarins toward OOH radical. Comput Theor Chem 1077:133–138

    Article  CAS  Google Scholar 

  41. Dimić DS, Milenković DA, Marković JMD, Marković ZS (2017) Thermodynamic and kinetic analysis of the reaction between biological catecholamines and chlorinated methylperoxy radicals. Mol Phys 8976:1–13

    Google Scholar 

  42. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    Article  CAS  PubMed  Google Scholar 

  43. Rose RC, Bode AM (1993) Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 7:1135–1142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of Serbia, Project No 172016. The authors are grateful to Reviewer for useful suggestions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Tošović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tošović, J., Marković, S. Reactivity of chlorogenic acid toward hydroxyl and methyl peroxy radicals relative to trolox in nonpolar media. Theor Chem Acc 137, 76 (2018). https://doi.org/10.1007/s00214-018-2251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2251-y

Keywords

Navigation