Skip to main content

Advertisement

Log in

Hydrogen atom transfer versus proton coupled electron transfer mechanism of gallic acid with different peroxy radicals

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Reactions of gallic acid (GA) with alkyl peroxy radicals (methylperoxy, ethylperoxy, iso-propylperoxy, and tert-butylperoxy) were simulated using density functional theory. The reaction is taking place in the way that hydrogen of hydroxy group of GA is transferred to the oxygen of each of peroxy radical. A newly formed radical is stabilized with delocalization of spin density over entire molecule, while the harmful peroxy radical is neutralized. These simple reactions can occur by two different, non-exclusive mechanisms: hydrogen atom transfer and proton coupled electron transfer. The competition between these mechanisms depends on both the solvent and the nature the free radicals. The main differences of these mechanisms are described, together with corresponding thermodynamic and kinetic consequences. The potency of this antioxidative action was thermodynamically and kinetically estimated for hydrogen atom transfer (HAT) and proton coupled electron transfer (PCET) mechanisms. The first one was estimated by calculating bond dissociation energy (ΔG BDE), while the second one was examined using the activation barriers necessary for this action (transition state theory (TST)), as well as using the zero-curvature tunneling effect (ZCT). Additionally, the analysis of single occupied molecular orbitals (SOMOs) in transition states was used to examine differences between HAT and PCET mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  Google Scholar 

  2. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    Article  Google Scholar 

  3. Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta Mol Basis Dis 1762:1051–1067

    Article  CAS  Google Scholar 

  4. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  CAS  Google Scholar 

  5. Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  6. Sies H (ed) (1991) Oxidative stress, oxidants and antioxidants. Academic Press, New York

    Google Scholar 

  7. Thomas CE, Kalyanaraman B (1998) Oxygen radicals and the disease process. Harwood Academic Publishers, London

    Google Scholar 

  8. Halliwel B (2001) Free radicals and other reactive species in disease. Nature Publishing Group, London

    Google Scholar 

  9. Lleó A, Greenberg SM, Growdon JH (2006) Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med 57:513–533

    Article  Google Scholar 

  10. Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs 11:1407–1435

    Article  CAS  Google Scholar 

  11. Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, Michel PP (2008) Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem 7:200–210

    Article  Google Scholar 

  12. Tomás-Barberán FA, Espin JC (2001) Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J Sci Food Agric 81:853–876

    Article  Google Scholar 

  13. You BR, Kim SZ, Kim SH, Park WH (2011) Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol Cell Biochem 357:295–303

    Article  CAS  Google Scholar 

  14. You BR, Moon HJ, Han YH, Park WH (2010) Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem Toxicol 48:1334–1340

    Article  CAS  Google Scholar 

  15. Elango S, Balwas R, Padma VV (2011) Gallic acid isolated from pomegranate peel extract induces reactive oxygen species mediated apoptosis in A549 cell line. J Cancer Ther 2:638–645

    Article  CAS  Google Scholar 

  16. Lecumberri E, Dupertuis YM, Miralbell R, Pichard C (2013) Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin Nutr 32:894–903

    Article  CAS  Google Scholar 

  17. Saxena HO, Faridi U, Srivastava S, Kumar JK, Darokar MP, Luqman S, Chanotiya CS, Krishna V, Negi AS, Khanuja SPS (2008) Gallic acid-based indanone derivatives as anticancer agents. Bioorg Med Chem Lett 18:3914–3918

    Article  CAS  Google Scholar 

  18. Zeng L, Holly JM, Perks CM (2014) Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells. Front Endocrinol (Lausanne) 5:61

    Google Scholar 

  19. Andreasen MF, Christensen LP, Meyer AS, Hansen A (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agric Food Chem 48:2837–2842

    Article  CAS  Google Scholar 

  20. Lam TBT, Kadoya K, Iiyama K (2001) Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the â-position, in grass cell walls. Phytochemistry 57:987–992

    Article  CAS  Google Scholar 

  21. Brett C, Waldron K (1996) Cell wall architecture and the skeletal role of the cell wall. In: Brett C, Waldron K (eds) Physiology and biochemistry of plant cell walls. Chapman and Hall, London

    Google Scholar 

  22. Bianco MA, Handaji A, Savolainen H (1998) Quantitative analysis of ellagic acid in hardwood samples. Sci Total Environ 222:123–126

    Article  CAS  Google Scholar 

  23. Pettersen RC, Ward JC, Lawrence AH (1993) Detection of northern red oak wetwood by fast heating and ion mobility spectrometric analysis. Holzforschung 47:513–522

    Article  CAS  Google Scholar 

  24. Koga T, Moro K, Nakamori K, Yamakoshi J, Hosoyama H, Kataoka S, Ariga T (1999) Increase of antioxidative potential of rat plasma by oral administration of proanthocyanidin-rich extract from grape seeds. J Agric Food Chem 47:1892–1897

    Article  CAS  Google Scholar 

  25. Burns J, Gardner PT, O’Neil J, Crawford S, Morecroft I, McPhail DB, Lister C, Matthews D, MacLean MR, Lean MEJ, Duthie GG, Crozier A (2000) Relantionship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J Agric Food Chem 48:220–230

    Article  CAS  Google Scholar 

  26. Sakagami H, Yokote Y, Akahane K (2001) Changes in amino acid pool and utilization during apoptosis in HL-60 cells induced by epigallocatechin gallate or gallic acid. Anticancer Res 21:2441–2447

    CAS  Google Scholar 

  27. Gutteridge JMC, Halliwell B (1994) Antioxidants in nutrition, health, and disease, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  28. Klein E, Lukeš V, Ilèin M (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chem Phys 336:51–57

    Article  CAS  Google Scholar 

  29. Litwinienko G, Ingold KU (2007) Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res 40:222–230

    Article  CAS  Google Scholar 

  30. Galano A (2015) Free radicals induced oxidative stress at a molecular level: the current status, challenges and perspectives of computational chemistry based protocols. J Mex Chem Soc 59:231–262

    Google Scholar 

  31. Galano A, Mazzone G, Alvarez DR, Marino T, Alvarez- Idaboy JR, Russo N (2016) Food antioxidants: chemical insights at the molecular level. Ann Rev Food Sci T 7:335–352

    Article  CAS  Google Scholar 

  32. Mazzone G, Galano A, Alvarez-Idaboy JR, Russo N (2016) Coumarin-chalcone hybrids as peroxyl radical scavengers: kinetics and mechanisms. J Chem In Model 56:662–670

    Article  CAS  Google Scholar 

  33. Min DB, Boff JM (2002) Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci Food Saf 1:58–72

    Article  CAS  Google Scholar 

  34. Rose RC, Bode AM (1993) Biology of free radical scavengers: an evaluation of ascorbate. FASEB J 7:1135–1142

    CAS  Google Scholar 

  35. Mayer JM (2004) Proton-coupled electron transfer: a reaction chemist’s view. Ann Rev Phys Chem 55:363–390

    Article  CAS  Google Scholar 

  36. Skone JH, Soudackov AV, Hammes-Schiffer SJ (2006) Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms. J Am Chem Soc 128:16655–16663

    Article  CAS  Google Scholar 

  37. Tishchenko O, Truhlar DG, Ceulemans A, Nguyen MTJ (2008) A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals. J Am Chem Soc 130:7000–7010

    Article  CAS  Google Scholar 

  38. Ðorović J, Marković JMD, Stepanić V, Begović N, Amiæ D, Marković Z (2014) Influence of different free radicals on scavenging potency of gallic acid. J Mol Model 20:2345

    Article  Google Scholar 

  39. Chen Y, Xiao H, Zheng J, Liang G (2015) Structure–thermodynamics–antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. PLoS ONE 10:e0121276

    Article  Google Scholar 

  40. Koroleva O, Torkova A, Nikolaev I, Khrameeva E, Fedorova T, Tsentalovich M, Amarowicz R (2014) Evaluation of the antiradical properties of phenolic acids. Int J Mol Sci 15(9):16351–16380

    Article  Google Scholar 

  41. Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108(22):4916–4922

    Article  CAS  Google Scholar 

  42. Saqib M, Mahmood A, Akram R, Khalid B, Afzal S, Kamal GM (2015) Density functional theory for exploring the structural characteristics and their effects on the antioxidant properties. J Pharm Appl Chem 1(2):65–71

    Google Scholar 

  43. Watabe T, Tsubaki A, Isobe M, Ozawa N, Hiratsuka A (1984) A mechanism for epoxidation of cholesterol by hepatic microsomal lipid hydroperoxides. Biochim Biophys Acta 795:60–66

    Article  CAS  Google Scholar 

  44. Fraga CG, Tappel AL (1988) Damage to DNA concurrent with lipid peroxidation in rat liver slices. Biochem J 252:893–896

    Article  CAS  Google Scholar 

  45. Akaike T, Sato KIS, Miyamoto YK, Ando MM, Maeda H (1992) Bactericidal activity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides. Arch Biochem Biophys 294:55–63

    Article  CAS  Google Scholar 

  46. Maeda H, Katsuki T, Akaike T, Yasutake R (1992) High correlation between lipid peroxide radical and tumor-promoter effect: suppression of tumor promotion in the Epstein-Barr virus/B-lymphocyte system and scavenging of alkyl peroxide radicals by various vegetable extracts. Jpn J Cancer Res 83:923–928

    Article  CAS  Google Scholar 

  47. Akaike T, Ijiri S, Sato K, Katsuki T, Maeda H (1995) Determination of peroxyl radical-scavenging activity in food by using bactericidal action of alkyl peroxyl radical. J Agric Food Chem 43:1864–1870

    Article  CAS  Google Scholar 

  48. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theo Comp 2:364–382

    Article  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman G, Scalmani JR, Barone V, Mennucci B, Petersson H, Nakatsuji GA, Caricato HP, Li MX, Hratchian HP, Izmaylov AF, Bloino JL, Zheng J, Sonnenberg G, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JE, Peralta JA, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov R, Kobayashi VN, Normand K, Raghavachari J, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega NJ, Millam M, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg S, Dapprich JJ, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  50. Marenich AV, Cramer CJ, Truhlar DG (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem 113:4538–4543

    Article  CAS  Google Scholar 

  51. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct THEOCHEM 169:41–62

    Article  Google Scholar 

  52. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2009) NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  53. Galano A, Marquez MF, Perez-Gonzalez A (2014) Ellagic acid: an unusually versatile protector against oxidative stress. Chem Res Toxicol 27:904–918

    Article  CAS  Google Scholar 

  54. Galano A, Alvarez-Idaboy JR (2013) A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. J Comp Chem 34:2430–2445

    Article  CAS  Google Scholar 

  55. Duncan WT, Bell RL, Truong TN (1998) TheRate: program for ab initio direct dynamics calculations of thermal and vibrational-state-selected rate constants. J Comp Chem 19:1039–1052

    Article  CAS  Google Scholar 

  56. Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Ann Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  57. Tiziana M, Galano A, Russo N (2014) Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory. J Phys Chem B 118(35):10380–10389

    Article  Google Scholar 

  58. Inagaki T, Yamamoto T (2014) Critical role of deep hydrogen tunneling to accelerate the antioxidant reaction of ubiquinol and vitamin E. J Phys Chem B 118(4):937–950

    Article  CAS  Google Scholar 

  59. Tejero I, González-García N, González-Lafont A, Lluch JM (2007) Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study. J Am Chem Soc 129(18):5846–5854

    Article  CAS  Google Scholar 

  60. Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) The inactivation of lipid peroxide radical by quercetin. A theoretical insight. Phys Chem Chem Phys 12(27):7662–7670

    Article  CAS  Google Scholar 

  61. Leopoldini M, Chiodo SG, Russo N, Toscano M (2011) Detailed investigation of the OH radical quenching by natural antioxidant caffeic acid studied by quantum mechanical models. J Chem Theory Comput 7(12):4218–4233

    Article  CAS  Google Scholar 

  62. Huguenin J, Ould Saad Hamady S, Bourson P (2015) Monitoring deprotonation of gallic acid by Raman spectroscopy. J Raman Spectrosc 46(11):1062–1066

    Article  CAS  Google Scholar 

  63. Galano A, Alvarez-Idaboy JR (2013) A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. J Comput Chem 34(28):2430–2445

    Article  CAS  Google Scholar 

  64. Mayer JM, Hrovat DA, Thomas JL, Borden WT (2002) Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self-exchange reactions. J Am Chem Soc 124:11142–11147

    Article  CAS  Google Scholar 

  65. Martínez A, Galano A, Vargas R (2011) Free radical scavenger properties of á-mangostin: thermodynamics and kinetics of HAT and RAF mechanisms. J Phys Chem B 115(43):12591–12598

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Science of Republic of Serbia (Project Nos. 172015, 174028, and 172016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Marković.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milenković, D., Đorović, J., Petrović, V. et al. Hydrogen atom transfer versus proton coupled electron transfer mechanism of gallic acid with different peroxy radicals. Reac Kinet Mech Cat 123, 215–230 (2018). https://doi.org/10.1007/s11144-017-1286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1286-8

Keywords

Navigation