Skip to main content
Log in

Insights into chemoselective fluorination reaction of alkynals via N-heterocyclic carbene and Brønsted base cooperative catalysis

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A systematically theoretical study has been carried out to understand the mechanism and chemoselectivity of N-heterocyclic carbene (NHC)-catalyzed fluorination reaction of alkynals using density functional theory calculations. The calculated results reveal that the reaction contains several steps, i.e., formation of the actual catalyst NHC, the nucleophilic attack of NHC on the carbonyl carbon atom of a formyl group, the formation of Breslow intermediate, the removal of methyl carbonate group to afford cumulative allenol intermediate, C–F bond formation coupled with generation of (SO2Ph)2N anion, esterification accompanied with formation of (SO2Ph)2NH, and dissociation of NHC from product. For the formation of Breslow intermediate via the [1,2]-proton transfer process, apart from the direct proton transfer mechanism, the H2O- and EtOH-mediated proton transfer mechanisms were also investigated, and the free energy barriers for the crucial proton transfer steps can be significantly lowered by explicit inclusion of the protic media EtOH. Furthermore, multiple analyses have also been performed to explore the roles of catalysts and origin of chemoselectivity. Noteworthily, the in situ formed Brønsted base (BB) (SO2Ph)2N anion was found to play an indispensable role in the esterification process, indicating that the reaction undergoes NHC-BB cooperatively catalytic mechanism, which is remarkably different from the direct esterification pathway proposed in the experimental references. This theoretical work provides a case on the exploration of the dual catalysis in NHC chemistry, which is valuable for rational design on newly cooperative organocatalysis in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miao JM, Yang K, Kurek M, Ge HB (2015) Org Lett 17:3738–3741

    Article  CAS  Google Scholar 

  2. Zhu QH, Ji DZ, Liang TT, Wang XY, Xu YG (2015) Org Lett 17:3798–3801

    Article  CAS  Google Scholar 

  3. Zhang Q, Yin XS, Chen K, Zhang SQ, Shi BF (2015) J Am Chem Soc 137:8219–8226

    Article  CAS  Google Scholar 

  4. Brown JM, Gouverneur V (2009) Angew Chem Int Ed 48:8610–8614

    Article  CAS  Google Scholar 

  5. Beeson TD, MacMillan DWC (2005) J Am Chem Soc 127:8826–8828

    Article  CAS  Google Scholar 

  6. Arimitsu S, Nakasone M (2016) J Org Chem 81:6707–6713

    Article  CAS  Google Scholar 

  7. Zhao YM, Cheung MS, Lin ZY, Sun JW (2012) Angew Chem Int Ed 51:10359–10363

    Article  CAS  Google Scholar 

  8. Dong XQ, Yang W, Hu WM, Sun JW (2015) Angew Chem Int Ed 54:660–663

    CAS  Google Scholar 

  9. Li FY, Wu ZJ, Wang J (2015) Angew Chem Int Ed 54:656–659

    CAS  Google Scholar 

  10. Wang X, Wu ZJ, Wang J (2016) Org Lett 18:576–579

    Article  CAS  Google Scholar 

  11. Emma MG, Lombardo M, Trombini C, Quintavalla A (2016) Eur J Org Chem 2016:3223–3232

    Article  CAS  Google Scholar 

  12. Kwiatkowski P, Beeson TD, Conrad JC, MacMillan DWC (2011) J Am Chem Soc 133:1738–1741

    Article  CAS  Google Scholar 

  13. Zeitler K (2006) Org Lett 8:637–640

    Article  CAS  Google Scholar 

  14. Kaeobamrung J, Mahatthananchai J, Zheng PG, Bode JW (2010) J Am Chem Soc 132:8810–8812

    Article  CAS  Google Scholar 

  15. Zhu ZQ, Xiao JC (2010) Adv Synth Catal 352:2455–2458

    Article  CAS  Google Scholar 

  16. Zhu ZQ, Zheng XL, Jiang NF, Wan XL, Xiao JC (2011) Chem Commun 47:8670–8672

    Article  CAS  Google Scholar 

  17. Wang Y, Tang MS, Wang YY, Wei DH (2016) J Org Chem 81:5370–5380

    Article  CAS  Google Scholar 

  18. Zheng LJ, Wang Y, Wei DH, Qiao Y (2016) Chem Asian J 11:3046–3054

    Article  CAS  Google Scholar 

  19. Qiao Y, Wei DH, Chang JB (2015) J Org Chem 80:8619–8630

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford CT

  21. Wang YY, Wei DH, Wang Y, Zhang WJ, Tang MS (2016) ACS Catal 6:279–289

    Article  CAS  Google Scholar 

  22. Wang Y, Wu BH, Zhang HY, Wei DH, Tang MS (2016) Phys Chem Chem Phys 18:19933–19943

    Article  CAS  Google Scholar 

  23. Wang Y, Wu BH, Zheng LJ, Wei DH, Tang MS (2016) Org Chem Front 3:190–203

    Article  Google Scholar 

  24. Zhang W, Wang Y, Wei DH, Tang MS, Zhu XJ (2016) Org Biomol Chem 14:6577–6590

    Article  CAS  Google Scholar 

  25. Zhang W, Zhao XY, Qiao Y, Guo XK, Wang YY, Wei DH, Tang MS, Niu JL (2015) Comput Theor Chem 1071:33–38

    Article  CAS  Google Scholar 

  26. Zheng LJ, Tang MS, Wang Y, Guo XK, Wei DH, Qiao Y (2016) Org Biomol Chem 14:3130–3141

    Article  CAS  Google Scholar 

  27. Zheng LJ, Qiao Y, Lu MX, Chang JB (2015) Org Biomol Chem 13:7558–7569

    Article  CAS  Google Scholar 

  28. Wang Y, Zheng LJ, Wei DH, Tang MS (2015) Org Chem Front 2:874–884

    Article  CAS  Google Scholar 

  29. Zhang CQ, Yin H, Luo XL, Chen R, Liang GM (2017) Theor Chem Acc 136:72–82

    Article  Google Scholar 

  30. De Lima Batista AP, Coelho F, Braga AAC (2016) Theor Chem Acc 135:186–193

    Article  Google Scholar 

  31. Adjieufack AI, Ndassa IM, Mbadcam JK, Rios-Gutierrez M, Domingo LR (2016) Theor Chem Acc 136:5–16

    Article  Google Scholar 

  32. Wang Y, Guo XK, Wu BH, Wei DH, Tang MS (2015) RSC Adv 5:100147–100158

    Article  CAS  Google Scholar 

  33. Guo XK, Zhang LB, Wei DH, Niu JL (2015) Chem Sci 6:7059–7071

    Article  CAS  Google Scholar 

  34. Wang YY, Wang Y, Zhang WJ, Zhu YY, Wei DH, Tang MS (2015) Org Biomol Chem 13:6587–6597

    Article  CAS  Google Scholar 

  35. Zhu YQ, Su H, Tang JL, Yang YQ (2015) Comput Theor Chem 1068:47–51

    Article  CAS  Google Scholar 

  36. Qiao Y, Han KL, Zhan CG (2014) Org Biomol Chem 12:2214–2227

    Article  CAS  Google Scholar 

  37. Qiao Y, Han KL, Zhan CG (2013) Biochemistry 52:6467–6479

    Article  CAS  Google Scholar 

  38. Wei DH, Lei BL, Tang MS, Zhan CG (2012) J Am Chem Soc 134:10436–10450

    Article  CAS  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  41. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  42. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  43. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  44. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  45. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  46. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  47. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1

  48. Lu T, Chen FW (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  49. Legault CY (2009) CYLView, 1.0b, Universit´e de Sherbrooke, Sherbrooke, Quebec, Canada, http://www.cylview.org

  50. Kozuch S, Shaik S (2011) Acc Chem Res 44:101–110

    Article  CAS  Google Scholar 

  51. Xia YZ, Liang Y, Chen YY, Wang M, Jiao L, Huang F, Liu S, Li YH, Yu ZX (2007) J Am Chem Soc 129:3470–3471

    Article  CAS  Google Scholar 

  52. Shi FQ, Li X, Xia Y, Zhang L, Yu ZX (2007) J Am Chem Soc 129:15503–15512

    Article  CAS  Google Scholar 

  53. Liang Y, Zhou HL, Yu ZX (2009) J Am Chem Soc 131:17783–17785

    Article  CAS  Google Scholar 

  54. McCusker EO, Scheidt KA (2013) Angew Chem Int Ed 52:13616–13620

    Article  Google Scholar 

  55. Xu JF, Chen XK, Wang M, Zheng PC, Song BA, Chi YR (2015) Angew Chem Int Ed 54:5161–5165

    Article  CAS  Google Scholar 

  56. Li ZY, Wei DH, Wang Y, Zhu YY, Tang MS (2014) J Org Chem 79:3069–3078

    Article  CAS  Google Scholar 

  57. Zhang MM, Wei DH, Wang Y, Li SJ, Liu JF, Zhu YY, Tang MS (2014) Org Biomol Chem 12:6374–6383

    Article  CAS  Google Scholar 

  58. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  59. Domingo LR, Picher MT, Saez JA (2009) J Org Chem 74:2726–2735

    Article  CAS  Google Scholar 

  60. Domingo LR, Perez P, Saez JA (2013) RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  61. Domingo LR, Chamorro E, Perez P (2009) Eur J Org Chem 2009:3036–3044

    Article  Google Scholar 

  62. Domingo LR, Chamorro E, Perez P (2008) J Phys Chem A 112:4046–4053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21303167), China Postdoctoral Science Foundation (No. 2013M530340 and 2015T80776), and Outstanding Young Talent Research Fund of Zhengzhou University (No.1521316001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, Y., Wang, L. et al. Insights into chemoselective fluorination reaction of alkynals via N-heterocyclic carbene and Brønsted base cooperative catalysis. Theor Chem Acc 136, 94 (2017). https://doi.org/10.1007/s00214-017-2127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2127-6

Keywords

Navigation