Skip to main content
Log in

Benchmarking density functionals and Gaussian basis sets for calculation of core-electron binding energies in amino acids

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A variety of density functionals and Gaussian basis sets has been studied for performance in calculations of core-electron binding energies of the carbon, nitrogen, and oxygen nuclei in the gaseous amino acids glycine, alanine, proline, threonine, and methionine. The main goal of this study is the identification of methods that will be sufficiently accurate and efficient to be used for analysis of experimental X-ray photoelectron spectra of amino acids, large polypeptides, and DNA nucleosides in various environments. The various methods studied are evaluated based on consideration of their performance for calculation of relative conformer energies, core-electron binding energies, and chemical shifts of the binding energies, using common popular density functionals with small basis sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baer DR, Engelhard MH (2010) XPS analysis of nanostructured materials and biological surfaces. J Electron Spectrosc Relat Phenom 178–179:415–432

    Article  CAS  Google Scholar 

  2. Dohan Ehrenfest DM, Coelho PG, Kang B, Sul Y, Albrektsson T (2010) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28(4):198–206

    Article  CAS  Google Scholar 

  3. O’Shea JN, Schnadt J, Andersson S (2000) X-ray photoelectron spectroscopy of low surface concentration mass-selected Ag clusters. J Chem Phys 113(20):9233–9238

    Article  Google Scholar 

  4. Peredkov S, Sorensen SL, Rosso A, Öhrwall G, Lundwall M, Rander T, Lindblad A, Bergersen H, Pokapanich W, Svensson S, Björneholm O (2007) Size determination of free metal clusters by core-level photoemission from different initial charge states. Phys Rev B 76(8):081402:1–4

  5. Peters S, Peredkov S, Neeb M, Eberhardt W, Al-Hada M (2013) Size-dependent XPS spectra of small supported Au-clusters. Surf Sci 608:129–134

    Article  CAS  Google Scholar 

  6. Rosenthal D, Ruta M, Schlögl R, Kiwi-Minsker L (2010) Combined XPS and TPD study of oxygen-functionalized carbon nanofibers grown on sintered metal fibers. Carbon 48(6):1835–1843

    Article  CAS  Google Scholar 

  7. Tougaard S (1996) Quantitative XPS: non-destructive analysis of surface nano-structures. Appl Surf Sci 100:1–10

    Article  Google Scholar 

  8. Holme A, Borve KJ, Saethre LJ, Thomas TD (2011) Accuracy of calculated chemical shifts in carbon 1 s ionization energies from single-reference ab initio methods and density functional theory. J Chem Theory Comput 7(12):4104–4114

    Article  CAS  Google Scholar 

  9. Shim J, Klobukowski M, Barysz M, Leszczynski J (2011) Calibration and applications of the ΔMP2 method for calculating core electron binding energies. Phys Chem Chem Phys 13(13):5703–5711

    Article  CAS  Google Scholar 

  10. Uhl F, Staemmler V (2012) Ab initio calculation of correlation effects for the O 1 s core electron binding energy in MgO. J Phys Condens Matter 24(30):305501:1–6

  11. Barysz M, Klobukowski M, Leszczynski J (2012) Relativistic study of tautomerism and core electron binding energies of thio-and selenocytosine. Struct Chem 23(5):1293–1299

    Article  CAS  Google Scholar 

  12. Coriani S, Christiansen O, Fransson T, Norman P (2012) Coupled-cluster response theory for near-edge X-ray-absorption fine structure of atoms and molecules. Phys Rev A 85(2) (022507):1–8

  13. Coriani S, Koch H (2015) Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. J Chem Phys 143(181103):1–5

    Google Scholar 

  14. Myhre RH, Coriani S, Koch H (2016) Near-edge X-ray absorption fine structure within multilevel coupled cluster theory. J Chem Theory Comput 12(6):2633–2643

    Article  CAS  Google Scholar 

  15. Chong DP (ed) (1995) Recent advances in density functional methods: part I. Recent advances in computational chemistry, vol 1. World Scientific Publishing Co Pte Ltd, Singapore

  16. Chong DP (ed) (1997) Recent advances in density functional methods: part II. Recent advances in computational chemistry, vol 1. World Scientific Publishing Co Pte Ltd, Singapore

  17. Chong DP (2009) Theoretical study of the electronic spectra of s-triazine vapour. Can J Chem 87(8):1148–1153

    Article  CAS  Google Scholar 

  18. Tu G, Tu Y, Vahtras O, Ågren H (2009) Core electron chemical shifts of hydrogen-bonded structures. Chem Phys Lett 468(4):294–298

    Article  CAS  Google Scholar 

  19. Segala M, Chong DP (2010) K-shell core-electron binding energies for phosphorus-and sulfur-containing molecules calculated by density functional theory. J Electron Spectrosc Relat Phenom 182(3):141–144

    Article  CAS  Google Scholar 

  20. Maruhn J, Reinhard P, Suraud E (2010) Density functional theory. Simple models of many-fermion systems. Springer, Berlin, pp 143–161

    Chapter  Google Scholar 

  21. Chong DP (2011) Density functional theory study of the vertical ionization energies of the valence and core electrons of cyclopentadiene, pyrrole, furan, and thiophene. Can J Chem 89(12):1477–1488

    Article  CAS  Google Scholar 

  22. Nalewajski RF (2012) Density functional theory. Perspectives in electronic structure theory. Springer, Berlin, pp 255–368

    Chapter  Google Scholar 

  23. Takahata Y, Chong DP (2012) DFT calculation of core– and valence–shell electron excitation and ionization energies of 2,1,3-benzothiadiazole C6H4SN2, 1,3,2,4-benzodithiadiazine C6H4S2N2, and 1,3,5,2,4-benzotrithiadiazepine C6H4S3N2. J Electron Spectrosc Relat Phenom 185(11):475–485

    Article  CAS  Google Scholar 

  24. Tolbatov I, Chipman DM (2014) Performance of density functionals for computation of core electron binding energies in first-row hydrides and glycine. Theor Chem Acc 133(5):1–7

    Article  CAS  Google Scholar 

  25. Wagner I, Musso H (1983) New naturally—occurring aminoacids. Angew Chem Int Ed 22:816–828

    Article  Google Scholar 

  26. Zhang Y, Li X, Peng L, Wang G, Ke K, Jiang Z (2012) Novel glycine-dependent inactivation of NMDA receptors in cultured hippocampal neurons. Neurosci Bull 28(5):550–560

    Article  CAS  Google Scholar 

  27. Euden J, Mason SA, Viero C, Thomas NL, Williams AJ (2013) Investigations of the contribution of a putative glycine hinge to ryanodine receptor channel gating. J Biol Chem 288(23):16671–16679

    Article  CAS  Google Scholar 

  28. Tolbatov I, Chipman DM (2014) Comparative study of gaussian basis sets for calculation of core electron binding energies in first-row hydrides and glycine. Theor Chem Acc 133(10):1–11

    Article  CAS  Google Scholar 

  29. Slaughter A, Banna M (1988) Core-photoelectron binding-energies of gaseous glycine—correlation with its proton affinity and gas-phase acidity. J Phys Chem 92(8):2165–2167

    Article  CAS  Google Scholar 

  30. Powis I, Rennie EE, Hergenhahn U, Kugeler O, Bussy-Socrate R (2003) Investigation of the gas-phase amino acid alanine by synchrotron radiation photoelectron spectroscopy. J Phys Chem A 107(1):25–34

    Article  CAS  Google Scholar 

  31. Cooper G, Gordon M, Tulumello D, Turci C, Kaznatcheev K, Hitchcock AP (2004) Inner shell excitation of glycine, glycyl-glycine, alanine and phenylalanine. J Electron Spectrosc Relat Phenom 137:795–799

    Article  CAS  Google Scholar 

  32. Marinho R, Lago A, Homem M, Coutinho L, De Souza G, Naves de Brito A (2006) Gas phase photoabsorption and mass spectra of l-alanine and l-proline in the soft X-ray region. Chem Phys 324(2):420–424

    Article  CAS  Google Scholar 

  33. Morita M, Mori M, Sunami T, Yoshida H, Hiraya A (2006) Ionic fragmentation processes of core-excited α-alanine in gas phase. Chem Phys Lett 417(1):246–250

    Article  CAS  Google Scholar 

  34. Plekan O, Feyer V, Richter R, Coreno M, de Simone M, Prince KC, Carravetta V (2007) An X-ray absorption study of glycine, methionine and proline. J Electron Spectrosc Relat Phenom 155(1):47–53

    Article  CAS  Google Scholar 

  35. Plekan O, Feyer V, Richter R, Coreno M, de Simone M, Prince KC, Carravetta V (2007) Photoemission and the shape of amino acids. Chem Phys Lett 442(4–6):429–433

    Article  CAS  Google Scholar 

  36. Plekan O, Feyer V, Richter R, Coreno M, de Simone M, Prince KC, Carravetta V (2007) Investigation of the amino acids glycine, proline, and methionine by photoemission spectroscopy. J Phys Chem A 111:10998–11005

    Article  CAS  Google Scholar 

  37. Feyer V, Plekan O, Richter R, Coreno M, Prince KC, Carravetta V (2008) Core level study of alanine and threonine. J Phys Chem A 112(34):7806–7815

    Article  CAS  Google Scholar 

  38. Csaszar AG (1992) Conformers of gaseous glycine. J Am Chem Soc 114(24):9568–9575

    Article  CAS  Google Scholar 

  39. Csaszar AG (1996) Conformers of gaseous α-alanine. J Phys Chem 100(9):3541–3551

    Article  CAS  Google Scholar 

  40. Chong D (1996) Density functional calculation of core-electron binding energies of glycine conformers. Can J Chem 74(6):1005–1007

    Article  CAS  Google Scholar 

  41. Nguyen D, Scheiner AC, Andzelm JW, Sirois S, Salahub DR, Hagler AT (1997) A density functional study of the glycine molecule: comparison with post-Hartree–Fock calculations and experiment. J Comput Chem 18(13):1609–1631

    Article  CAS  Google Scholar 

  42. Stepanian S, Reva I, Radchenko E, Rosado M, Duarte M, Fausto R, Adamowicz L (1998) Matrix-isolation infrared and theoretical studies of the glycine conformers. J Phys Chem A 102(6):1041–1054

    Article  CAS  Google Scholar 

  43. Stepanian S, Reva I, Radchenko E, Adamowicz L (1998) Conformational behavior of α-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study. J Phys Chem A 102(24):4623–4629

    Article  CAS  Google Scholar 

  44. Stepanian S, Reva I, Radchenko E, Adamowicz L (2001) Conformers of nonionized proline. Matrix-isolation infrared and post-Hartree–Fock ab initio study. J Phys Chem A 105(47):10664–10672

    Article  CAS  Google Scholar 

  45. Czinki E, Csaszar AG (2003) Conformers of gaseous proline. Chem Eur J 9(4):1008–1019

    Article  CAS  Google Scholar 

  46. Blanco S, Lesarri A, López JC, Alonso JL (2004) The gas-phase structure of alanine. J Am Chem Soc 126(37):11675–11683

    Article  CAS  Google Scholar 

  47. Zhang M, Lin Z (2006) Ab initio studies of the conformers and conformational distribution of the gaseous hydroxyamino acid threonine. J Mol Struc Theochem 760(1):159–166

    Article  CAS  Google Scholar 

  48. Alonso JL, Pérez C, Sanz ME, López JC, Blanco S (2009) Seven conformers of l-threonine in the gas phase: a LA-MB-FTMW study. Phys Chem Chem Phys 11(4):617–627

    Article  CAS  Google Scholar 

  49. Rode JE, Dobrowolski JC, Sadlej J (2013) Prediction of l-methionine VCD spectra in the gas phase and water solution. J Phys Chem B 117(46):14202–14214

    Article  CAS  Google Scholar 

  50. Myrseth V, Bozek J, Kukk E, Sæthre L, Thomas T (2002) Adiabatic and vertical carbon 1s ionization energies in representative small molecules. J Electron Spectrosc Relat Phenom 122(1):57–63

    Article  CAS  Google Scholar 

  51. Mills B, Martin R, Shirley D (1976) Further studies of the core binding energy-proton affinity correlation in molecules. J Am Chem Soc 98(9):2380–2385

    Article  CAS  Google Scholar 

  52. Sankari R, Ehara M, Nakatsuji H, de Fanis A, Aksela H, Sorensen SL, Piancastelli MN, Kukk E, Ueda K (2006) High resolution O 1s photoelectron shake-up satellite spectrum of H2O. Chem Phys Lett 422(1):51–57

    Article  CAS  Google Scholar 

  53. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT, Slipchenko LV, Levchenko SV, O’Neill DP et al (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191

    Article  CAS  Google Scholar 

  54. Krylov AI, Gill PMW (2013) Q-Chem: an engine for innovation. WIREs Comput Mol Sci 3:317–326

    Article  CAS  Google Scholar 

  55. Inoue C, Kaneda Y, Aida M, Endo K (1995) Simulation of XPS of poly (vinyl alcohol), poly (acrylic acid), poly (vinyl acetate), and poly (methyl methacrylate) polymers by an ab initio MO method using the model molecules. Polym J 27(3):300–309

    Article  CAS  Google Scholar 

  56. Endo K, Maeda S, Aida M (1997) Simulation of C1 s spectra of C- and O-containing polymers in XPS by ab initio MO calculations using model oligomers. Polym J 29(2):171–181

    Article  CAS  Google Scholar 

  57. Bureau C, Chong DP, Endo K, Delhalle J, Lecayon G, Le Moel A (1997) Recent advances in the practical and accurate calculation of core and valence XPS spectra of polymers: from interpretation to simulation? Nucl Instr Meth Phys Res B 131:1–12

    Article  CAS  Google Scholar 

  58. Shirai S, Yamamoto S, Hyodo S (2004) Accurate calculation of core-electron binding energies: multireference perturbation treatment. J Chem Phys 121:7586–7594

    Article  CAS  Google Scholar 

  59. Tsuneda T, Suzumura T, Hirao K (1999) A new one-parameter progressive Colle–Salvetti-type correlation functional. J Chem Phys 110:10664–10678

    Article  CAS  Google Scholar 

  60. Jolly WL, Hendrickson DN (1970) Thermodynamic interpretation of chemical shifts in core-electron binding energies. J Am Chem Soc 92(7):1863–1871

    Article  CAS  Google Scholar 

  61. Jolly WL (1978) The Application of X-Ray Photoelectron Spectroscopy in Inorganic Chemistry. In: Brundle CR, Baker AO (eds) Electron spectroscopy: theory, techniques and applications, vol 1. Academic Press, London, pp 119–149

    Google Scholar 

  62. Johansson B, Mårtensson N (1980) Core-level binding-energy shifts for the metallic elements. Phys Rev B 21:4427–4457

    Article  CAS  Google Scholar 

  63. Grunze M, Brundle C, Tomanek D (1982) Adsorption and decomposition of ammonia on a W (110) surface: photoemission fingerprinting and interpretation of the core level binding energies using the equivalent core approximation. Surf Sci 119(2):133–149

    Article  CAS  Google Scholar 

  64. Plashkevych O, Privalov T, Agren H, Carravetta V, Ruud K (2000) On the validity of the equivalent cores approximation for computing X-ray photoemission and photoabsorption spectral bands. Chem Phys 260(1–2):11–28

    Article  CAS  Google Scholar 

  65. Pettersson LG, Wahlgren U, Gropen O (1983) Effective core potential calculations using frozen orbitals. Applications to transition metals. Chem Phys 80(1):7–16

    Article  CAS  Google Scholar 

  66. Panas I, Siegbahn P, Wahlgren U (1987) Model studies of the chemisorption of hydrogen and oxygen on nickel surfaces. I. The design of a one-electron effective core potential which includes 3d relaxation effects. Chem Phys 112(3):325–337

    Article  CAS  Google Scholar 

  67. Mattsson A, Panas I, Siegbahn P, Wahlgren U, Akeby H (1987) Model studies of the chemisorption of hydrogen and oxygen on Cu(100). Phys Rev B 36(14):7389–7401

    Article  CAS  Google Scholar 

  68. Nyberg M, Hasselström J, Karis O, Wassdahl N, Weinelt M, Nilsson A, Pettersson LG (2000) The electronic structure and surface chemistry of glycine adsorbed on Cu (110). J Chem Phys 112:5420–5427

    Article  CAS  Google Scholar 

  69. Oltedal V, Borve K, Saethre L, Thomas T, Bozek J, Kukk E (2004) Carbon 1 s photoelectron spectroscopy of six-membered cyclic hydrocarbons. Phys Chem Chem Phys 6(17):4254–4259

    Article  CAS  Google Scholar 

  70. Carroll TX, Thomas TD, Sæthre LJ, Børve KJ (2009) Additivity of substituent effects. Core-ionization energies and substituent effects in fluoromethylbenzenes. J Phys Chem A 113(15):3481–3490

    Article  CAS  Google Scholar 

  71. Hadjisavvas N, Theophilou A (1985) Rigorous formulation of Slater’s transition-state theory for excited states. Phys Rev A 32(2):720–724

    Article  CAS  Google Scholar 

  72. Wang S, Schwarz W (1996) Simulation of nondynamical correlation in density functional calculations by the optimized fractional orbital occupation approach: application to the potential energy surfaces of O3 and SO2. J Chem Phys 105:4641–4648

    Article  CAS  Google Scholar 

  73. Triguero L, Plashkevych O, Pettersson L, Agren H (1999) Separate state vs. transition state Kohn-Sham calculations of X-ray photoelectron binding energies and chemical shifts. J Electron Spectrosc Relat Phenom 104(1–3):195–207

    Article  CAS  Google Scholar 

  74. Goddard JD, Orlova G (1999) Density functional theory with fractionally occupied frontier orbitals and the instabilities of the Kohn-Sham solutions for defining diradical transition states: ring-opening reactions. J Chem Phys 111:7705–7712

    Article  CAS  Google Scholar 

  75. Bagus PS (1965) Self-consistent-field wave functions for hole states of some Ne-like and Ar-like ions. Phys Rev 139(3A):A619–A634

    Article  Google Scholar 

  76. Naves de Brito A, Correia N, Svensson S, Ågren H (1991) A theoretical study of X-ray photoelectron spectra of model molecules for polymethylmethacrylate. J Chem Phys 95(4):2965–2974

    Article  CAS  Google Scholar 

  77. Cavigliasso G, Chong D (1999) Accurate density-functional calculation of core-electron binding energies by a total-energy difference approach. J Chem Phys 111(21):9485–9492

    Article  CAS  Google Scholar 

  78. Takahashi O, Pettersson LG (2004) Functional dependence of core-excitation energies. J Chem Phys 121:10339–10345

    Article  CAS  Google Scholar 

  79. Takahata Y, Okamoto AK, Chong DP (2006) DFT calculation of core-electron binding energies of pyrimidine and purine bases. Int J Quantum Chem 106(13):2581–2586

    Article  CAS  Google Scholar 

  80. Myrseth V, Saethre LJ, Borve KJ, Thomas TD (2007) The substituent effect of the methyl group. Carbon 1 s ionization energies, proton affinities, and reactivities of the methylbenzenes. J Org Chem 72(15):5715–5723

    Article  CAS  Google Scholar 

  81. Saethre LJ, Borve KJ, Thomas TD (2011) Chemical shifts of carbon 1s ionization energies. J Electron Spectrosc Relat Phenom 183(1–3):2–9

    Article  CAS  Google Scholar 

  82. Gilbert ATB, Besley NA, Gill PMW (2008) Self-consistent field calculations of excited states using the maximum overlap method (MOM). J Phys Chem A 112(50):13164–13171

    Article  CAS  Google Scholar 

  83. Becke A (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  84. Perdew JP (1991) Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche P, Eschrig H (eds) Electronic structure of solids’ 91. Akademie-Verlag, Berlin, pp 11–20

    Google Scholar 

  85. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:244–249

    Article  Google Scholar 

  86. Adamson RD, Gill PM, Pople JA (1998) Empirical density functionals. Chem Phys Lett 284(1–2):6–11

    Article  CAS  Google Scholar 

  87. Tsuneda T, Suzumura T, Hirao K (1999) A new one-parameter progressive Colle–Salvetti-type correlation functional. J Chem Phys 110(22):10664–10678

    Article  CAS  Google Scholar 

  88. Adamo C, Scuseria G, Barone V (1999) Accurate excitation energies from time-dependent density functional theory: assessing the PBE0 model. J Chem Phys 111(7):2889–2899

    Article  CAS  Google Scholar 

  89. Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  90. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  91. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  92. Schafer A, Horn H, Ahlrichs R (1992) Fully optimized contracted gaussian-basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  93. Huzinaga S (1965) Gaussian-type functions for polyatomic systems. I. J Chem Phys 42:1293–1302

    Article  Google Scholar 

  94. Dunning TH Jr (1971) Gaussian basis functions for use in molecular calculations. III. Contraction of (10s6p) atomic basis sets for the first-row atoms. J Chem Phys 55:716–723

    Article  CAS  Google Scholar 

  95. Grev RS, Schaefer HF III (1989) 6-311G is not of valence triple-zeta quality. J Chem Phys 91:7305–7306

    Article  CAS  Google Scholar 

  96. McLean A, Chandler G (1980) Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72(10):5639–5648

    Article  CAS  Google Scholar 

  97. Feyereisen M, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett 208:359–363

    Article  CAS  Google Scholar 

  98. Vahtras O, Almlöf J, Feyereisen MW (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213:514–518

    Article  CAS  Google Scholar 

  99. Weigend F, Häser M (1997) RI-MP2: first derivatives and global consistency. Theor Chem Acc 97(1–4):331–340

    Article  CAS  Google Scholar 

  100. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294:143–152

    Article  CAS  Google Scholar 

  101. Dunlap B (2000) Robust and variational fitting. Phys Chem Chem Phys 2:2113–2116

    Article  CAS  Google Scholar 

  102. Weigend F, Köhn A, Hättig C. (2002) Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J Chem Phys 116:3175–3183

    Article  CAS  Google Scholar 

  103. Jung Y, Sodt A, Gill PMW, Head-Gordon M (2005) Auxiliary basis expansions for large-scale electronic structure calculations. Proc Nat Acad Sci USA 102:6692–6697

    Article  CAS  Google Scholar 

  104. Distasio RA, Steele RP, Rhee YM, Shao Y, Head-Gordon M (2007) An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. J Comput Chem 28(5):839–856

    Article  CAS  Google Scholar 

  105. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  106. Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371

    Article  CAS  Google Scholar 

  107. Besley NA, Gilbert AT, Gill PMW (2009) Self-consistent-field calculations of core excited states. J Chem Phys 130(124308):1–7

    Google Scholar 

  108. Chong DP (1995) Density-functional calculation of core-electron binding energies of C, N, O, and F. J Chem Phys 103(5):1842–1845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Department of Energy under Award Number DE-SC0002216. This is Contribution No. NDRL-5158 from the Notre Dame Radiation Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Chipman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Supplementary material 2 (XLSX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolbatov, I., Chipman, D.M. Benchmarking density functionals and Gaussian basis sets for calculation of core-electron binding energies in amino acids. Theor Chem Acc 136, 82 (2017). https://doi.org/10.1007/s00214-017-2115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2115-x

Keywords

Navigation