Skip to main content
Log in

Probing optical properties of thiophene derivatives for two-photon absorption

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We report a state-of-the-art characterization of the linear and nonlinear optical properties of two recent synthesized organic dyes based on the 2,5-dithienylpyrrole motifs. In particular after a careful conformational search was performed, the absorption spectra have been obtained at time-dependent density functional theory level taking into account vibrational and dynamical effects via a Wigner exploration of the potential energy surface. Furthermore, the excited state topology and electronic density reorganization have been characterized using natural transition orbitals and the charge transfer character quantified through recent developed descriptors, also allowing for the rationalization of the poor interfacial electron injection properties exhibited by the dyes when grafted on TiO2 surfaces. Finally, two-photon absorption spectra have been calculated, extremely high cross sections have been obtained in the infrared region paving the way to the possible exploitation of the previous dyes for the development of photoactive smart materials or photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schultz DM, Yoon TP (2014) Solar synthesis: prospects in visible light photocatalysis. Science 343:1239176-1–1239176-8

    Article  Google Scholar 

  2. Berardi S, Drouet S, Francàs L et al (2014) Molecular artificial photosynthesis. Chem Soc Rev 43:7501–7519

    Article  CAS  Google Scholar 

  3. Frischmann PD, Mahata K, Würthner F et al (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870

    Article  CAS  Google Scholar 

  4. Colasson B, Credi A, Ragazzon G (2016) Light-driven molecular machines based on ruthenium (II) polypyridine complexes: strategies and recent advances. Coord Chem Rev 325:125–134

    Article  CAS  Google Scholar 

  5. Browne WR, Feringa BL (2006) Making molecular machines work. Nat Nanotechnol 1:25–35

    Article  CAS  Google Scholar 

  6. Astumian RD, Mukherjee S, Warshel A (2016) The physics and physical chemistry of molecular machines. Chemphyschem 17:1719–1741

    Article  CAS  Google Scholar 

  7. Le Bailly B (2016) Nobel prize in chemistry: welcome to the machine. Nat Nanotechnol 11:923

    Article  Google Scholar 

  8. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  9. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  10. Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19–33

    Article  CAS  Google Scholar 

  11. Pandey RK (2000) Recent advances in photodynamic therapy. J Porphyr Phthalocyanines 4:368–373

    Article  CAS  Google Scholar 

  12. Yuan Q, Wu Y, Wang J et al (2013) Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew Chem Int Ed 52:13965–13969

    Article  CAS  Google Scholar 

  13. Babilas P, Landthaler M, Szeimies R-M (2006) Photodynamic therapy in dermatology. Eur J Dermatol 16:340–348

    Google Scholar 

  14. Winkler K, Simon C, Finke M et al (2016) Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm). J Photochem Photobiol B Biol 162:340–347

    Article  CAS  Google Scholar 

  15. Koshi E, Mohan A, Rajesh S, Philip K (2011) Antimicrobial photodynamic therapy: an overview. J Indian Soc Periodontol 15:323

    Article  Google Scholar 

  16. Allison RR, Moghissi K (2013) Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagnosis Photodyn Ther 10:331–341

    Article  CAS  Google Scholar 

  17. Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther 7:61–75

    Article  CAS  Google Scholar 

  18. Tsai C-L, Chen J-C, Wang W-J (2001) Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng 21:7–14

    Google Scholar 

  19. Zhou H, Zhou F, Tang S et al (2012) Two-photon absorption dyes with thiophene as π electron bridge: synthesis, photophysical properties and optical data storage. Dye Pigment 92:633–641

    Article  CAS  Google Scholar 

  20. Zou Q, Zhao H, Zhao Y et al (2015) Effective two-photon excited photodynamic therapy of xenograft tumors sensitized by water-soluble bis(arylidene) cycloalkanone photosensitizers. J Med Chem 58:7949–7958

    Article  CAS  Google Scholar 

  21. Zheng Y-C, Zheng M-L, Li K et al (2015) Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Adv 5:770–774

    Article  CAS  Google Scholar 

  22. Abbotto A, Beverina L, Bozio R et al (2002) Novel heterocycle-based two-photon absorbing dyes. Org Lett 4(9):1495–1498

    Article  CAS  Google Scholar 

  23. Soos ZG, Galvao DS (1994) One- and two-photon excitations of polythiophene: role of nonconjugated heteroatoms. J Phys Chem 98:1029–1033

    Article  CAS  Google Scholar 

  24. Huang P-H, Shen J-Y, Pu S-C et al (2006) Synthesis and characterization of new fluorescent two-photon absorption chromophores. J Mater Chem 16:850–857

    Article  CAS  Google Scholar 

  25. Turan HT, Eken Y, Marazzi M et al (2016) Assessing one- and two-photon optical properties of boron containing arenes. J Phys Chem C 120:17916–17926

    Article  CAS  Google Scholar 

  26. Sharmoukh W, Attanzio A, Busatto E et al (2015) 2,5-Dithienylpyrrole (DTP) as a donor component in DTP-π-A organic sensitizers: photophysical and photovoltaic properties. RSC Adv 5:4041–4050

    Article  CAS  Google Scholar 

  27. Chantzis A, Very T, Monari A, Assfeld X (2012) Improved treatment of surrounding effects: UV/Vis absorption properties of a solvated Ru(II) complex. J Chem Theory Comput 8:1536–1541

    Article  CAS  Google Scholar 

  28. Etienne T, Very T, Perpète EA et al (2013) A QM/MM study of the absorption spectrum of harmane in water solution and interacting with DNA: the crucial role of dynamic effects. J Phys Chem B 117:4973–4980

    Article  CAS  Google Scholar 

  29. Gattuso H, Dumont E, Marazzi M, Monari A (2016) Two-photon-absorption DNA sensitization via solvated electrons production: unraveling the photochemical pathways by molecular modeling and simulation. Phys Chem Chem Phys 18:18598–18606

    Article  CAS  Google Scholar 

  30. Gattuso H, Assfeld X, Monari A (2015) Modeling DNA electronic circular dichroism by QM/MM methods and Frenkel Hamiltonian. Theor Chem Acc 134:225–232

    Article  Google Scholar 

  31. Marazzi M, Gattuso H, Monari A (2016) Nile blue and Nile red optical properties predicted by TD-DFT and CASPT2 methods: static and dynamic solvent effects. Theor Chem Acc 135:57

    Article  Google Scholar 

  32. Etienne T (2015) Probing the locality of excited states with linear algebra. J Chem Theory Comput 11:1692–1699. doi:10.1021/ct501163b

    Article  CAS  Google Scholar 

  33. Etienne T, Assfeld X, Monari A (2014) New insight into the topology of excited states through detachment/attachment density matrices-based centroids of charge. J Chem Theory Comput 10:3906–3914

    Article  CAS  Google Scholar 

  34. Etienne T, Assfeld X, Monari A (2014) Toward a quantitative assessment of electronic transitions charge-transfer character. J Chem Theory Comput 10:3896–3905

    Article  CAS  Google Scholar 

  35. Becke A (1993) B3LYP. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenber DJ (2009) Gaussian 09. Revision D.01, Inc, Wallingford CT

  38. Slater JC (1951) A simplification of the Hartree-Fock method. Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  39. Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106-1–084106-15

    Article  Google Scholar 

  40. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  41. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  42. Mennucci B (2012) Polarizable continuum model. Wiley Interdiscip Rev Comput Mol Sci 2:386–404

    Article  CAS  Google Scholar 

  43. Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct 464:211–226

    Article  CAS  Google Scholar 

  44. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775–4777

    Article  CAS  Google Scholar 

  45. Dahl JP, Springborg M (1988) The Morse oscillator in position space, momentum space, and phase space. J Chem Phys 88:4535

    Article  CAS  Google Scholar 

  46. Barbatti M, Ruckenbauer M, Plasser F et al (2014) Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdiscip Rev Comput Mol Sci 4:26–33

    Article  CAS  Google Scholar 

  47. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chemie-Int Ed 48:3244–3266

    Article  CAS  Google Scholar 

  48. Aidas K, Angeli C, Bak KL et al (2014) The Dalton quantum chemistry program system. Wiley Interdiscip Rev Comput Mol Sci 4:269–284

    Article  CAS  Google Scholar 

  49. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128:044118–(1–8)

  50. Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J Chem Theory Comput 5:2420–2435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from the University of Lorraine and French CNRS is gratefully acknowledged. AM thanks Campus France for support under the bilateral “Bosphorus” 35649PL PHC program covering students mobility. SC acknowledges TUBITAK-PIA (Project No: 115Z863) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saron Catak or Antonio Monari.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10,610 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengul, O., Boydas, E.B., Pastore, M. et al. Probing optical properties of thiophene derivatives for two-photon absorption. Theor Chem Acc 136, 67 (2017). https://doi.org/10.1007/s00214-017-2094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2094-y

Keywords

Navigation