Advertisement

Theoretical Chemistry Accounts

, 135:257 | Cite as

Benchmarking DFT-GGA calculations for the structure optimisation of neutral-framework zeotypes

  • Michael Fischer
  • Felix O. Evers
  • Filip Formalik
  • Adam Olejniczak
Regular Article

Abstract

Structure optimisations in the framework of plane-wave density functional theory (DFT) were performed for a set of reference structures of neutral-framework zeotypes and related compounds. The reference set comprised eight all-silica zeolites, four aluminophosphate zeotypes, and two dense polymorphs of SiO2 (α-quartz) and AlPO4 (α-berlinite). The optimisations considered a total of five GGA-type exchange–correlation functionals (GGA = generalised gradient approximation). Along with the very popular PBE functional, which is well-known to overestimate the lattice dimensions, two GGA functionals designed for solids (WC and PBEsol) and two variants of PBE including a pairwise dispersion correction (PBE-D2 and PBE-TS) were included. A detailed analysis of the agreement between DFT-optimised structures and experimental crystal structure data (obtained for calcined systems) showed that the inclusion of a dispersion correction greatly improves the prediction of the lattice parameters, with PBE-TS performing particularly well. On the other hand, WC and PBEsol give T–O bond lengths (T = tetrahedral sites) that are in better agreement with experimental data. The accurate reproduction of the T–O–T angles was found to be particularly challenging, as functionals without dispersion correction tend to overestimate these angles, whereas dispersion-corrected variants underestimate them. For all-silica zeolites, the present results were compared to those of a previous DFT study using the hybrid B3LYP-D2 functional and to results of molecular mechanics calculations employing two popular force fields, with none of these methods performing better than PBE-TS or PBE-D2. In order to better understand some of the shortcomings of the functionals considered, additional results for two outliers that were removed from the set of reference structures were analysed. Finally, the ability to reproduce the relative stability was assessed for those SiO2 frameworks for which experimental enthalpies of transition are available. Here, PBE-D2 outperformed PBE-TS, which showed a systematic tendency to overestimate the energy difference (relative to α-quartz). On the basis of the present work, PBE-TS can be recommended as a reasonable default choice for structure optimisations of neutral-framework zeotypes. While future benchmarking work could address a wider range of functionals and dispersion correction schemes, it needs to be considered that the limited availability of low-temperature crystal structure data limits the accuracy with which the deviations between computation and experiment can be assessed for this group of materials.

Keywords

Zeolites Density functional theory Dispersion correction Benchmarking Solid state chemistry 

Notes

Acknowledgements

M. F. and F. O. E. are grateful to Prof. Dr Andreas Lüttge and Dr Rolf Arvidson (Marum, Bremen) for generous access to the Asgard cluster, on which the DFT calculations were run. We would like to thank Dr FX Coudert (CNRS, ParisTech) for sharing the B3LYP-D2 structures with us, as well as Dr Ross Angel (Padova) for insightful discussions. M. F. is funded by the Central Research Development Funds (CRDF) of the University of Bremen (Funding line 04—Independent Projects for Post-Docs). F. F. and A. O. are grateful for support by the Wrocław Centre for Networking and Supercomputing (grant no. 172), providing access to the BIOVIA Materials Studio 8.0 software.

Supplementary material

214_2016_2014_MOESM1_ESM.rar (84 kb)
Supplementary material 1 (RAR 85 kb)
214_2016_2014_MOESM2_ESM.xlsx (162 kb)
Supplementary material 2 (XLSX 162 kb)

References

  1. 1.
    Masters AF, Maschmeyer T (2011) Zeolites—from curiosity to cornerstone. Microporous Mesoporous Mater 142:423–438. doi: 10.1016/j.micromeso.2010.12.026 CrossRefGoogle Scholar
  2. 2.
    Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA (2015) Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev 44:7044–7111. doi: 10.1039/C5CS00029G CrossRefGoogle Scholar
  3. 3.
    Coudert F-X (2013) Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Phys Chem Chem Phys 15:16012–16018. doi: 10.1039/c3cp51817e CrossRefGoogle Scholar
  4. 4.
    Fischer M, Bell RG (2013) Identifying promising zeolite frameworks for separation applications: a building-block-based approach. J Phys Chem C 117:17099–17110. doi: 10.1021/jp405507y CrossRefGoogle Scholar
  5. 5.
    Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Org Chem 22:1127–1135. doi: 10.1002/poc.1606 CrossRefGoogle Scholar
  6. 6.
    Eshuis H, Furche F (2011) A parameter-free density functional that works for noncovalent interactions. J Phys Chem Lett 2:983–989. doi: 10.1021/jz200238f CrossRefGoogle Scholar
  7. 7.
    Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev Comput Mol Sci 1:211–228. doi: 10.1002/wcms.30 CrossRefGoogle Scholar
  8. 8.
    Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116:5105–5154. doi: 10.1021/acs.chemrev.5b00533 CrossRefGoogle Scholar
  9. 9.
    Goerigk L, Kruse H, Grimme S (2011) Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. ChemPhysChem 12:3421–3433. doi: 10.1002/cphc.201100826 CrossRefGoogle Scholar
  10. 10.
    Risthaus T, Grimme S (2013) Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. J Chem Theory Comput 9:1580–1591. doi: 10.1021/ct301081n CrossRefGoogle Scholar
  11. 11.
    Reilly AM, Tkatchenko A (2013) Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J Chem Phys 139:024705. doi: 10.1063/1.4812819 CrossRefGoogle Scholar
  12. 12.
    Binns J, Healy MR, Parsons S, Morrison CA (2014) Assessing the performance of density functional theory in optimizing molecular crystal structure parameters. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 70:259–267. doi: 10.1107/S205252061303268X CrossRefGoogle Scholar
  13. 13.
    Carter DJ, Rohl AL (2014) Benchmarking calculated lattice parameters and energies of molecular crystals using van der Waals density functionals. J Chem Theory Comput 10:3423–3437. doi: 10.1021/ct500335b CrossRefGoogle Scholar
  14. 14.
    Remya K, Suresh CH (2013) Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non-covalent dimers? A benchmark study using Gaussian09. J Comput Chem 34:1341–1353. doi: 10.1002/jcc.23263 CrossRefGoogle Scholar
  15. 15.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  16. 16.
    Tran F, Laskowski R, Blaha P, Schwarz K (2007) Performance on molecules, surfaces, and solids of the Wu–Cohen GGA exchange-correlation energy functional. Phys Rev B 75:115131. doi: 10.1103/PhysRevB.75.115131 CrossRefGoogle Scholar
  17. 17.
    Haas P, Tran F, Blaha P (2009) Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B 79:085104. doi: 10.1103/PhysRevB.79.085104 CrossRefGoogle Scholar
  18. 18.
    Tran F, Stelzl J, Blaha P (2016) Rungs 1 to 4 of DFT Jacob’s ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J Chem Phys 144:204120. doi: 10.1063/1.4948636 CrossRefGoogle Scholar
  19. 19.
    Wu Z, Cohen R (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116. doi: 10.1103/PhysRevB.73.235116 CrossRefGoogle Scholar
  20. 20.
    Perdew J, Ruzsinszky A, Csonka G, Vydrov O, Scuseria G, Constantin L, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406. doi: 10.1103/PhysRevLett.100.136406 CrossRefGoogle Scholar
  21. 21.
    Constantin LA, Terentjevs A, Della Sala F, Cortona P, Fabiano E (2016) Semiclassical atom theory applied to solid-state physics. Phys Rev B 93:045126. doi: 10.1103/PhysRevB.93.045126 CrossRefGoogle Scholar
  22. 22.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi: 10.1002/jcc.20495 CrossRefGoogle Scholar
  23. 23.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104. doi: 10.1063/1.3382344 CrossRefGoogle Scholar
  24. 24.
    Demichelis R, Civalleri B, Ferrabone M, Dovesi R (2010) On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. Int J Quantum Chem 110:406–415. doi: 10.1002/qua.22301 CrossRefGoogle Scholar
  25. 25.
    De la Pierre M, Orlando R, Maschio L, Doll K, Ugliengo P, Dovesi R (2011) Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4. J Comput Chem 32:1775–1784. doi: 10.1002/jcc.21750 CrossRefGoogle Scholar
  26. 26.
    Demichelis R, Civalleri B, D’Arco P, Dovesi R (2010) Performance of 12 DFT functionals in the study of crystal systems: Al2SiO5 orthosilicates and Al hydroxides as a case study. Int J Quantum Chem 110:2260–2273. doi: 10.1002/qua.22574 CrossRefGoogle Scholar
  27. 27.
    Valdiviés Cruz K, Lam A, Zicovich-Wilson CM (2014) Periodic quantum chemical studies on anhydrous and hydrated acid clinoptilolite. J Phys Chem A 118:5779–5789. doi: 10.1021/jp410754a Google Scholar
  28. 28.
    Pernot P, Civalleri B, Presti D, Savin A (2015) Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry. J Phys Chem A 119:5288–5304. doi: 10.1021/jp509980w CrossRefGoogle Scholar
  29. 29.
    Tunega D, Bučko T, Zaoui A (2012) Assessment of ten DFT methods in predicting structures of sheet silicates: importance of dispersion corrections. J Chem Phys 137:114105. doi: 10.1063/1.4752196 CrossRefGoogle Scholar
  30. 30.
    Tkatchenko A, Scheffler M (2009) Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005. doi: 10.1103/PhysRevLett.102.073005 CrossRefGoogle Scholar
  31. 31.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158. doi: 10.1063/1.478522 CrossRefGoogle Scholar
  32. 32.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  33. 33.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  34. 34.
    Román-Román EI, Zicovich-Wilson CM (2015) The role of long-range van der Waals forces in the relative stability of SiO2-zeolites. Chem Phys Lett 619:109–114. doi: 10.1016/j.cplett.2014.11.044 CrossRefGoogle Scholar
  35. 35.
    Göltl F, Hafner J (2012) Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. I. Structure and energetics. J Chem Phys 136:064501. doi: 10.1063/1.3676408 CrossRefGoogle Scholar
  36. 36.
    Göltl F, Hafner J (2012) Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. II. Electronic structure and photoluminescence spectra. J Chem Phys 136:064502. doi: 10.1063/1.3676409 CrossRefGoogle Scholar
  37. 37.
    Göltl F, Hafner J (2012) Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. III. Energetics and vibrational spectroscopy of adsorbates. J Chem Phys 136:064503. doi: 10.1063/1.3676410 CrossRefGoogle Scholar
  38. 38.
    Hernandez-Tamargo CE, Roldan A, de Leeuw NH (2016) A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets. J Solid State Chem 237:192–203. doi: 10.1016/j.jssc.2016.02.006 CrossRefGoogle Scholar
  39. 39.
    Larin AV, Trubnikov DN, Vercauteren DP (2005) Improvement of X-ray diffraction geometries of water physisorbed in zeolites on the basis of periodic Hartree-Fock calculations. Int J Quantum Chem 102:971–979. doi: 10.1002/qua.20463 CrossRefGoogle Scholar
  40. 40.
    Labat F, Fuchs AH, Adamo C (2010) Toward an accurate modeling of the Water − Zeolite Interaction: calibrating the DFT approach. J Phys Chem Lett 1:763–768. doi: 10.1021/jz100011p CrossRefGoogle Scholar
  41. 41.
    Fischer M (2015) Structure and bonding of water molecules in zeolite hosts: benchmarking plane-wave DFT against crystal structure data. Z Kristallogr 230:325–336. doi: 10.1515/zkri-2014-1809 Google Scholar
  42. 42.
    Uzunova EL, Göltl F, Kresse G, Hafner J (2009) Application of hybrid functionals to the modeling of NO adsorption on Cu − SAPO-34 and Co − SAPO-34: a periodic DFT study. J Phys Chem C 113:5274–5291. doi: 10.1021/jp809927k CrossRefGoogle Scholar
  43. 43.
    Otero Arean C, Delgado MR, Nachtigall P, Thang HV, Rubeš M, Bulánek R, Chlubná-Eliášová P (2014) Measuring the Brønsted acid strength of zeolites–does it correlate with the O–H frequency shift probed by a weak base? Phys Chem Chem Phys 16:10129–10141. doi: 10.1039/c3cp54738h CrossRefGoogle Scholar
  44. 44.
    Nour Z, Berthomieu D (2014) Multiple adsorption of CO on Na-exchanged Y faujasite: a DFT investigation. Mol Simul 40:33–44. doi: 10.1080/08927022.2013.848281 CrossRefGoogle Scholar
  45. 45.
    Fischer M, Delgado MR, Areán CO, Duran CO (2015) CO adsorption complexes in zeolites: how does the inclusion of dispersion interactions affect predictions made from DFT calculations? The case of Na-CHA. Theor Chem Acc 134:91. doi: 10.1007/s00214-015-1692-9 CrossRefGoogle Scholar
  46. 46.
    Shang J, Li G, Singh R, Xiao P, Danaci D, Liu JZ, Webley PA (2014) Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: a combination of van der Waals density functional theory calculations and experiment study. J Chem Phys 140:084705. doi: 10.1063/1.4866455 CrossRefGoogle Scholar
  47. 47.
    Nguyen CM, Reyniers M-F, Marin GB (2010) Theoretical study of the adsorption of C1–C4 primary alcohols in H-ZSM-5. Phys Chem Chem Phys 12:9481–9493. doi: 10.1039/c000503g CrossRefGoogle Scholar
  48. 48.
    Göltl F, Hafner J (2011) Alkane adsorption in Na-exchanged chabazite: the influence of dispersion forces. J Chem Phys 134:064102. doi: 10.1063/1.3549815 CrossRefGoogle Scholar
  49. 49.
    Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) Efficient approach for the computational study of alcohol and nitrile adsorption in H-ZSM-5. J Phys Chem C 116:5499–5508. doi: 10.1021/jp2123828 CrossRefGoogle Scholar
  50. 50.
    Göltl F, Grüneis A, Bučko T, Hafner J (2012) Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Mo̸ller–Plesset perturbation theory. J Chem Phys 137:114111. doi: 10.1063/1.4750979 CrossRefGoogle Scholar
  51. 51.
    Göltl F, Hafner J (2013) Modelling the adsorption of short alkanes in protonated chabazite: the impact of dispersion forces and temperature. Microporous Mesoporous Mater 166:176–184. doi: 10.1016/j.micromeso.2012.04.052 CrossRefGoogle Scholar
  52. 52.
    Chiu C, Vayssilov GN, Genest A, Borgna A, Rösch N (2014) Predicting adsorption enthalpies on silicalite and HZSM-5: a benchmark study on DFT strategies addressing dispersion interactions. J Comput Chem 35:809–819. doi: 10.1002/jcc.23558 CrossRefGoogle Scholar
  53. 53.
    Göltl F, Sautet P (2014) Modeling the adsorption of short alkanes in the zeolite SSZ-13 using “van der Waals” DFT exchange correlation functionals: understanding the advantages and limitations of such functionals. J Chem Phys 140:154105. doi: 10.1063/1.4871085 CrossRefGoogle Scholar
  54. 54.
    Plévert J, Okubo T, Kubota Y, Honda T, Sugi Y (2000) GUS-1: a mordenite-like molecular sieve with the 12-ring channel of ZSM-12. Chem Commun 2363–2364. doi: 10.1039/b005225f
  55. 55.
    Vaughan PA (1966) The crystal structure of the zeolite ferrierite. Acta Crystallogr 21:983–990. doi: 10.1107/S0365110X66004298 CrossRefGoogle Scholar
  56. 56.
    Pickering IJ, Maddox PJ, Thomas JM, Cheetham AK (1989) A neutron powder diffraction analysis of ferrierite. J Catal 265:261–265CrossRefGoogle Scholar
  57. 57.
    Alberti A, Sabelli C (1987) Statistical and true symmetry of ferrierite: possible absence of straight T–O–T bridging bonds. Zeitschrift für Krist 178:249–256. doi: 10.1524/zkri.1987.178.1-4.249 CrossRefGoogle Scholar
  58. 58.
    Morris RE, Weigel SJ, Henson NJ, Bull LM, Janicke MT, Chmelka BF, Cheetham AK (1994) A synchrotron X-ray diffraction, neutron diffraction, 29Si MAS-NMR, and computational study of the siliceous form of zeolite ferrierite. J Am Chem Soc 116:11849–11855. doi: 10.1021/ja00105a027 CrossRefGoogle Scholar
  59. 59.
    Lewis JE, Freyhardt CC, Davis ME (1996) Location of pyridine guest molecules in an electroneutral {3∞}[SiO4/2] host framework: single-crystal structures of the as-synthesized and calcined forms of high-silica ferrierite. J Phys Chem 100:5039–5049. doi: 10.1021/jp9530055 CrossRefGoogle Scholar
  60. 60.
    Baur WH, Fischer RX (2010) ZeoBase—a databank for zeolite-type crystal structures. In: De Frede A (ed) Proceedings of the 16th International Zeolite Conference, Sorrento, ItalyGoogle Scholar
  61. 61.
    Baerlocher C, McCusker LB (2012) Database of zeolite structures. http://www.iza-structure.org/databases/
  62. 62.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570. doi: 10.1524/zkri.220.5.567.65075 Google Scholar
  63. 63.
    Francis GP, Payne MC (1990) Finite basis set corrections to total energy pseudopotential calculations. J Phys: Condens Matter 2:4395–4404. doi: 10.1088/0953-8984/2/19/007 Google Scholar
  64. 64.
    Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure. Eur J Mineral 2:63–78. doi: 10.1127/ejm/2/1/0063 CrossRefGoogle Scholar
  65. 65.
    Onac BP, Effenberger HS (2007) Re-examination of berlinite (AlPO4) from the Cioclovina Cave, Romania. Am Mineral 92:1998–2001. doi: 10.2138/am.2007.2581 CrossRefGoogle Scholar
  66. 66.
    Díaz-Cabañas M-J, Barrett PA, Camblor MA (1998) Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chem Commun 1881–1882. doi: 10.1039/a804800b
  67. 67.
    Hriljac JA, Eddy MM, Cheetham AK, Donohue JA, Ray GJ (1993) Powder neutron diffraction and 29Si MAS NMR studies of siliceous zeolite-Y. J Solid State Chem 106:66–72. doi: 10.1006/jssc.1993.1265 CrossRefGoogle Scholar
  68. 68.
    Villaescusa LA, Lightfoot P, Teat SJ, Morris RE (2001) Variable-temperature microcrystal X-ray diffraction studies of negative thermal expansion in the pure silica zeolite IFR. J Am Chem Soc 123:5453–5459. doi: 10.1021/ja015797o CrossRefGoogle Scholar
  69. 69.
    Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287–290. doi: 10.1038/nature02909 CrossRefGoogle Scholar
  70. 70.
    Marler B, Grünewald-Lüke A, Gies H (1998) Structure refinement of the as-synthesized and the calcined form of zeolite RUB-3 (RTE). Microporous Mesoporous Mater 26:49–59. doi: 10.1016/S1387-1811(98)00213-3 CrossRefGoogle Scholar
  71. 71.
    Wragg DS, Morris R, Burton AW, Zones SI, Ong K, Lee G (2007) The synthesis and structure of SSZ-73: an all-silica zeolite with an unusual framework topology. Chem Mater 19:3924–3932. doi: 10.1021/cm0705284 CrossRefGoogle Scholar
  72. 72.
    Williams JJ, Lethbridge ZAD, Clarkson GJ, Ashbrook SE, Evans KE, Walton RI (2009) The bulk material dissolution method with small amines for the synthesis of large crystals of the siliceous zeolites ZSM-22 and ZSM-48. Microporous Mesoporous Mater 119:259–266. doi: 10.1016/j.micromeso.2008.10.023 CrossRefGoogle Scholar
  73. 73.
    Kirchner RM, Grosse-Kunstleve RW, Pluth JJ, Wilson ST, Broach RW, Smith JV (2000) Structures of as-synthesized AlPO4-53(A), calcined dehydrated AlPO4-53(B), and AlPO4-53(C), a new phase determined by the FOCUS method. Microporous Mesoporous Mater 39:319–332. doi: 10.1016/S1387-1811(00)00205-5 CrossRefGoogle Scholar
  74. 74.
    Amri M, Walton RI (2009) Negative thermal expansion in the aluminum and gallium phosphate zeotypes with CHA and AEI structure types. Chem Mater 21:3380–3390. doi: 10.1021/cm901140u CrossRefGoogle Scholar
  75. 75.
    Attfield MP, Sleight AW (1998) Exceptional negative thermal expansion in AlPO4-17. Chem Mater 10:2013–2019. doi: 10.1021/cm9801587 CrossRefGoogle Scholar
  76. 76.
    Afeworki M, Dorset DL, Kennedy GJ, Strohmaier KG (2006) Synthesis and characterization of a new microporous material. 1. Structure of Aluminophosphate EMM-3. Chem Mater 18:1697–1704. doi: 10.1021/cm052174r CrossRefGoogle Scholar
  77. 77.
    Villaescusa LA, Barrett PA, Camblor MA (1998) Calcination of octadecasil: fluoride removal and symmetry of the pure SiO2 host. Chem Mater 10:3966–3973. doi: 10.1021/cm9804113 CrossRefGoogle Scholar
  78. 78.
    King RSP, Dann SE, Elsegood MRJ, Kelly PF, Mortimer RJ (2009) The synthesis, full characterisation and utilisation of template-free silica sodalite, a novel polymorph of silica. Chem A Eur J 15:5441–5443. doi: 10.1002/chem.200802551 CrossRefGoogle Scholar
  79. 79.
    Momma K, Izumi F (2011) VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. doi: 10.1107/S0021889811038970 CrossRefGoogle Scholar
  80. 80.
    Downs RT, Gibbs GV, Bartelmehs KL, Boisen MB (1992) Variations of bond lengths and volumes of silicate tetrahedra with temperature. Am Mineral 77:751–757Google Scholar
  81. 81.
    Woodcock DA, Lightfoot P, Villaescusa LA, Diaz-Cabanas MJ, Camblor MA, Engberg D (1999) Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4: a neutron powder diffraction study. Chem Mater 11:2508–2514. doi: 10.1021/cm991047q CrossRefGoogle Scholar
  82. 82.
    Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) The widespread occurrence of negative thermal expansion in zeolites. J Mater Chem 11:212–216. doi: 10.1039/b002950p CrossRefGoogle Scholar
  83. 83.
    Al-Saidi WA, Voora VK, Jordan KD (2012) An assessment of the vdW-TS method for extended systems. J Chem Theory Comput 8:1503–1513. doi: 10.1021/ct200618b CrossRefGoogle Scholar
  84. 84.
    Dobson JF (2014) Beyond pairwise additivity in London dispersion interactions. Int J Quantum Chem 114:1157–1161. doi: 10.1002/qua.24635 CrossRefGoogle Scholar
  85. 85.
    Reilly AM, Tkatchenko A (2015) van der Waals dispersion interactions in molecular materials: beyond pairwise additivity. Chem Sci 6:3289–3301. doi: 10.1039/C5SC00410A CrossRefGoogle Scholar
  86. 86.
    Kronik L, Tkatchenko A (2014) Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc Chem Res 47:3208–3216. doi: 10.1021/ar500144s CrossRefGoogle Scholar
  87. 87.
    Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Kristallogr 220:571–573. doi: 10.1524/zkri.220.5.571.65065 Google Scholar
  88. 88.
    Combariza AF, Gomez DA, Sastre G (2013) Simulating the properties of small pore silica zeolites using interatomic potentials. Chem Soc Rev 42:114–127. doi: 10.1039/c2cs35243e CrossRefGoogle Scholar
  89. 89.
    Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem Soc Chem Commun 1271–1273. doi: 10.1039/c39840001271
  90. 90.
    Cygan RT, Liang J-J, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108:1255–1266. doi: 10.1021/jp0363287 CrossRefGoogle Scholar
  91. 91.
    Piccione PM, Laberty C, Yang S, Camblor MA, Navrotsky A, Davis ME (2000) Thermochemistry of pure-silica zeolites. J Phys Chem B 104:10001–10011. doi: 10.1021/jp002148a CrossRefGoogle Scholar
  92. 92.
    Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, Bygrave PJ, Bylsma R, Campbell JE, Car R, Case DH, Chadha R, Cole JC, Cosburn K, Cuppen HM, Curtis F, Day GM, DiStasio RA Jr, Dzyabchenko A, van Eijck BP, Elking DM, van den Ende JA, Facelli JC, Ferraro MB, Fusti-Molnar L, Gatsiou C-A, Gee TS, de Gelder R, Ghiringhelli LM, Goto H, Grimme S, Guo R, Hofmann DWM, Hoja J, Hylton RK, Iuzzolino L, Jankiewicz W, de Jong DT, Kendrick J, de Klerk NJJ, Ko H-Y, Kuleshova LN, Li X, Lohani S, Leusen FJJ, Lund AM, Lv J, Ma Y, Marom N, Masunov AE, McCabe P, McMahon DP, Meekes H, Metz MP, Misquitta AJ, Mohamed S, Monserrat B, Needs RJ, Neumann MA, Nyman J, Obata S, Oberhofer H, Oganov AR, Orendt AM, Pagola GI, Pantelides CC, Pickard CJ, Podeszwa R, Price LS, Price SL, Pulido A, Read MG, Reuter K, Schneider E, Schober C, Shields GP, Singh P, Sugden IJ, Szalewicz K, Taylor CR, Tkatchenko A, Tuckerman ME, Vacarro F, Vasileiadis M, Vazquez-Mayagoitia A, Vogt L, Wang Y, Watson RE, de Wijs GA, Yang J, Zhu Q, Groom CR (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:439–459. doi: 10.1107/S2052520616007447 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Crystallography group, Department of GeosciencesUniversity of BremenBremenGermany
  2. 2.MAPEX Center for Materials and ProcessesUniversity of BremenBremenGermany
  3. 3.Group of Bioprocess and Biomedical Engineering, Faculty of ChemistryWrocław University of Science and TechnologyWrocławPoland
  4. 4.Department of Spectroscopy of Excited States, Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWrocławPoland

Personalised recommendations