Skip to main content
Log in

Benchmarking DFT-GGA calculations for the structure optimisation of neutral-framework zeotypes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Structure optimisations in the framework of plane-wave density functional theory (DFT) were performed for a set of reference structures of neutral-framework zeotypes and related compounds. The reference set comprised eight all-silica zeolites, four aluminophosphate zeotypes, and two dense polymorphs of SiO2 (α-quartz) and AlPO4 (α-berlinite). The optimisations considered a total of five GGA-type exchange–correlation functionals (GGA = generalised gradient approximation). Along with the very popular PBE functional, which is well-known to overestimate the lattice dimensions, two GGA functionals designed for solids (WC and PBEsol) and two variants of PBE including a pairwise dispersion correction (PBE-D2 and PBE-TS) were included. A detailed analysis of the agreement between DFT-optimised structures and experimental crystal structure data (obtained for calcined systems) showed that the inclusion of a dispersion correction greatly improves the prediction of the lattice parameters, with PBE-TS performing particularly well. On the other hand, WC and PBEsol give T–O bond lengths (T = tetrahedral sites) that are in better agreement with experimental data. The accurate reproduction of the T–O–T angles was found to be particularly challenging, as functionals without dispersion correction tend to overestimate these angles, whereas dispersion-corrected variants underestimate them. For all-silica zeolites, the present results were compared to those of a previous DFT study using the hybrid B3LYP-D2 functional and to results of molecular mechanics calculations employing two popular force fields, with none of these methods performing better than PBE-TS or PBE-D2. In order to better understand some of the shortcomings of the functionals considered, additional results for two outliers that were removed from the set of reference structures were analysed. Finally, the ability to reproduce the relative stability was assessed for those SiO2 frameworks for which experimental enthalpies of transition are available. Here, PBE-D2 outperformed PBE-TS, which showed a systematic tendency to overestimate the energy difference (relative to α-quartz). On the basis of the present work, PBE-TS can be recommended as a reasonable default choice for structure optimisations of neutral-framework zeotypes. While future benchmarking work could address a wider range of functionals and dispersion correction schemes, it needs to be considered that the limited availability of low-temperature crystal structure data limits the accuracy with which the deviations between computation and experiment can be assessed for this group of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Masters AF, Maschmeyer T (2011) Zeolites—from curiosity to cornerstone. Microporous Mesoporous Mater 142:423–438. doi:10.1016/j.micromeso.2010.12.026

    Article  CAS  Google Scholar 

  2. Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA (2015) Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev 44:7044–7111. doi:10.1039/C5CS00029G

    Article  Google Scholar 

  3. Coudert F-X (2013) Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Phys Chem Chem Phys 15:16012–16018. doi:10.1039/c3cp51817e

    Article  CAS  Google Scholar 

  4. Fischer M, Bell RG (2013) Identifying promising zeolite frameworks for separation applications: a building-block-based approach. J Phys Chem C 117:17099–17110. doi:10.1021/jp405507y

    Article  CAS  Google Scholar 

  5. Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Org Chem 22:1127–1135. doi:10.1002/poc.1606

    Article  CAS  Google Scholar 

  6. Eshuis H, Furche F (2011) A parameter-free density functional that works for noncovalent interactions. J Phys Chem Lett 2:983–989. doi:10.1021/jz200238f

    Article  CAS  Google Scholar 

  7. Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev Comput Mol Sci 1:211–228. doi:10.1002/wcms.30

    Article  CAS  Google Scholar 

  8. Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116:5105–5154. doi:10.1021/acs.chemrev.5b00533

    Article  CAS  Google Scholar 

  9. Goerigk L, Kruse H, Grimme S (2011) Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. ChemPhysChem 12:3421–3433. doi:10.1002/cphc.201100826

    Article  CAS  Google Scholar 

  10. Risthaus T, Grimme S (2013) Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes. J Chem Theory Comput 9:1580–1591. doi:10.1021/ct301081n

    Article  CAS  Google Scholar 

  11. Reilly AM, Tkatchenko A (2013) Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals. J Chem Phys 139:024705. doi:10.1063/1.4812819

    Article  Google Scholar 

  12. Binns J, Healy MR, Parsons S, Morrison CA (2014) Assessing the performance of density functional theory in optimizing molecular crystal structure parameters. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 70:259–267. doi:10.1107/S205252061303268X

    Article  CAS  Google Scholar 

  13. Carter DJ, Rohl AL (2014) Benchmarking calculated lattice parameters and energies of molecular crystals using van der Waals density functionals. J Chem Theory Comput 10:3423–3437. doi:10.1021/ct500335b

    Article  CAS  Google Scholar 

  14. Remya K, Suresh CH (2013) Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non-covalent dimers? A benchmark study using Gaussian09. J Comput Chem 34:1341–1353. doi:10.1002/jcc.23263

    Article  CAS  Google Scholar 

  15. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  16. Tran F, Laskowski R, Blaha P, Schwarz K (2007) Performance on molecules, surfaces, and solids of the Wu–Cohen GGA exchange-correlation energy functional. Phys Rev B 75:115131. doi:10.1103/PhysRevB.75.115131

    Article  Google Scholar 

  17. Haas P, Tran F, Blaha P (2009) Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B 79:085104. doi:10.1103/PhysRevB.79.085104

    Article  Google Scholar 

  18. Tran F, Stelzl J, Blaha P (2016) Rungs 1 to 4 of DFT Jacob’s ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J Chem Phys 144:204120. doi:10.1063/1.4948636

    Article  Google Scholar 

  19. Wu Z, Cohen R (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116. doi:10.1103/PhysRevB.73.235116

    Article  Google Scholar 

  20. Perdew J, Ruzsinszky A, Csonka G, Vydrov O, Scuseria G, Constantin L, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406. doi:10.1103/PhysRevLett.100.136406

    Article  Google Scholar 

  21. Constantin LA, Terentjevs A, Della Sala F, Cortona P, Fabiano E (2016) Semiclassical atom theory applied to solid-state physics. Phys Rev B 93:045126. doi:10.1103/PhysRevB.93.045126

    Article  Google Scholar 

  22. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  23. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J Chem Phys 132:154104. doi:10.1063/1.3382344

    Article  Google Scholar 

  24. Demichelis R, Civalleri B, Ferrabone M, Dovesi R (2010) On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. Int J Quantum Chem 110:406–415. doi:10.1002/qua.22301

    Article  CAS  Google Scholar 

  25. De la Pierre M, Orlando R, Maschio L, Doll K, Ugliengo P, Dovesi R (2011) Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4. J Comput Chem 32:1775–1784. doi:10.1002/jcc.21750

    Article  Google Scholar 

  26. Demichelis R, Civalleri B, D’Arco P, Dovesi R (2010) Performance of 12 DFT functionals in the study of crystal systems: Al2SiO5 orthosilicates and Al hydroxides as a case study. Int J Quantum Chem 110:2260–2273. doi:10.1002/qua.22574

    Article  CAS  Google Scholar 

  27. Valdiviés Cruz K, Lam A, Zicovich-Wilson CM (2014) Periodic quantum chemical studies on anhydrous and hydrated acid clinoptilolite. J Phys Chem A 118:5779–5789. doi:10.1021/jp410754a

    Google Scholar 

  28. Pernot P, Civalleri B, Presti D, Savin A (2015) Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry. J Phys Chem A 119:5288–5304. doi:10.1021/jp509980w

    Article  CAS  Google Scholar 

  29. Tunega D, Bučko T, Zaoui A (2012) Assessment of ten DFT methods in predicting structures of sheet silicates: importance of dispersion corrections. J Chem Phys 137:114105. doi:10.1063/1.4752196

    Article  Google Scholar 

  30. Tkatchenko A, Scheffler M (2009) Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005. doi:10.1103/PhysRevLett.102.073005

    Article  Google Scholar 

  31. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  32. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  34. Román-Román EI, Zicovich-Wilson CM (2015) The role of long-range van der Waals forces in the relative stability of SiO2-zeolites. Chem Phys Lett 619:109–114. doi:10.1016/j.cplett.2014.11.044

    Article  Google Scholar 

  35. Göltl F, Hafner J (2012) Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. I. Structure and energetics. J Chem Phys 136:064501. doi:10.1063/1.3676408

    Article  Google Scholar 

  36. Göltl F, Hafner J (2012) Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. II. Electronic structure and photoluminescence spectra. J Chem Phys 136:064502. doi:10.1063/1.3676409

    Article  Google Scholar 

  37. Göltl F, Hafner J (2012) Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. III. Energetics and vibrational spectroscopy of adsorbates. J Chem Phys 136:064503. doi:10.1063/1.3676410

    Article  Google Scholar 

  38. Hernandez-Tamargo CE, Roldan A, de Leeuw NH (2016) A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets. J Solid State Chem 237:192–203. doi:10.1016/j.jssc.2016.02.006

    Article  CAS  Google Scholar 

  39. Larin AV, Trubnikov DN, Vercauteren DP (2005) Improvement of X-ray diffraction geometries of water physisorbed in zeolites on the basis of periodic Hartree-Fock calculations. Int J Quantum Chem 102:971–979. doi:10.1002/qua.20463

    Article  CAS  Google Scholar 

  40. Labat F, Fuchs AH, Adamo C (2010) Toward an accurate modeling of the Water − Zeolite Interaction: calibrating the DFT approach. J Phys Chem Lett 1:763–768. doi:10.1021/jz100011p

    Article  CAS  Google Scholar 

  41. Fischer M (2015) Structure and bonding of water molecules in zeolite hosts: benchmarking plane-wave DFT against crystal structure data. Z Kristallogr 230:325–336. doi:10.1515/zkri-2014-1809

    CAS  Google Scholar 

  42. Uzunova EL, Göltl F, Kresse G, Hafner J (2009) Application of hybrid functionals to the modeling of NO adsorption on Cu − SAPO-34 and Co − SAPO-34: a periodic DFT study. J Phys Chem C 113:5274–5291. doi:10.1021/jp809927k

    Article  CAS  Google Scholar 

  43. Otero Arean C, Delgado MR, Nachtigall P, Thang HV, Rubeš M, Bulánek R, Chlubná-Eliášová P (2014) Measuring the Brønsted acid strength of zeolites–does it correlate with the O–H frequency shift probed by a weak base? Phys Chem Chem Phys 16:10129–10141. doi:10.1039/c3cp54738h

    Article  Google Scholar 

  44. Nour Z, Berthomieu D (2014) Multiple adsorption of CO on Na-exchanged Y faujasite: a DFT investigation. Mol Simul 40:33–44. doi:10.1080/08927022.2013.848281

    Article  CAS  Google Scholar 

  45. Fischer M, Delgado MR, Areán CO, Duran CO (2015) CO adsorption complexes in zeolites: how does the inclusion of dispersion interactions affect predictions made from DFT calculations? The case of Na-CHA. Theor Chem Acc 134:91. doi:10.1007/s00214-015-1692-9

    Article  Google Scholar 

  46. Shang J, Li G, Singh R, Xiao P, Danaci D, Liu JZ, Webley PA (2014) Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: a combination of van der Waals density functional theory calculations and experiment study. J Chem Phys 140:084705. doi:10.1063/1.4866455

    Article  Google Scholar 

  47. Nguyen CM, Reyniers M-F, Marin GB (2010) Theoretical study of the adsorption of C1–C4 primary alcohols in H-ZSM-5. Phys Chem Chem Phys 12:9481–9493. doi:10.1039/c000503g

    Article  CAS  Google Scholar 

  48. Göltl F, Hafner J (2011) Alkane adsorption in Na-exchanged chabazite: the influence of dispersion forces. J Chem Phys 134:064102. doi:10.1063/1.3549815

    Article  Google Scholar 

  49. Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) Efficient approach for the computational study of alcohol and nitrile adsorption in H-ZSM-5. J Phys Chem C 116:5499–5508. doi:10.1021/jp2123828

    Article  Google Scholar 

  50. Göltl F, Grüneis A, Bučko T, Hafner J (2012) Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Mo̸ller–Plesset perturbation theory. J Chem Phys 137:114111. doi:10.1063/1.4750979

    Article  Google Scholar 

  51. Göltl F, Hafner J (2013) Modelling the adsorption of short alkanes in protonated chabazite: the impact of dispersion forces and temperature. Microporous Mesoporous Mater 166:176–184. doi:10.1016/j.micromeso.2012.04.052

    Article  Google Scholar 

  52. Chiu C, Vayssilov GN, Genest A, Borgna A, Rösch N (2014) Predicting adsorption enthalpies on silicalite and HZSM-5: a benchmark study on DFT strategies addressing dispersion interactions. J Comput Chem 35:809–819. doi:10.1002/jcc.23558

    Article  CAS  Google Scholar 

  53. Göltl F, Sautet P (2014) Modeling the adsorption of short alkanes in the zeolite SSZ-13 using “van der Waals” DFT exchange correlation functionals: understanding the advantages and limitations of such functionals. J Chem Phys 140:154105. doi:10.1063/1.4871085

    Article  Google Scholar 

  54. Plévert J, Okubo T, Kubota Y, Honda T, Sugi Y (2000) GUS-1: a mordenite-like molecular sieve with the 12-ring channel of ZSM-12. Chem Commun 2363–2364. doi:10.1039/b005225f

  55. Vaughan PA (1966) The crystal structure of the zeolite ferrierite. Acta Crystallogr 21:983–990. doi:10.1107/S0365110X66004298

    Article  CAS  Google Scholar 

  56. Pickering IJ, Maddox PJ, Thomas JM, Cheetham AK (1989) A neutron powder diffraction analysis of ferrierite. J Catal 265:261–265

    Article  Google Scholar 

  57. Alberti A, Sabelli C (1987) Statistical and true symmetry of ferrierite: possible absence of straight T–O–T bridging bonds. Zeitschrift für Krist 178:249–256. doi:10.1524/zkri.1987.178.1-4.249

    Article  CAS  Google Scholar 

  58. Morris RE, Weigel SJ, Henson NJ, Bull LM, Janicke MT, Chmelka BF, Cheetham AK (1994) A synchrotron X-ray diffraction, neutron diffraction, 29Si MAS-NMR, and computational study of the siliceous form of zeolite ferrierite. J Am Chem Soc 116:11849–11855. doi:10.1021/ja00105a027

    Article  CAS  Google Scholar 

  59. Lewis JE, Freyhardt CC, Davis ME (1996) Location of pyridine guest molecules in an electroneutral {3∞}[SiO4/2] host framework: single-crystal structures of the as-synthesized and calcined forms of high-silica ferrierite. J Phys Chem 100:5039–5049. doi:10.1021/jp9530055

    Article  CAS  Google Scholar 

  60. Baur WH, Fischer RX (2010) ZeoBase—a databank for zeolite-type crystal structures. In: De Frede A (ed) Proceedings of the 16th International Zeolite Conference, Sorrento, Italy

  61. Baerlocher C, McCusker LB (2012) Database of zeolite structures. http://www.iza-structure.org/databases/

  62. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570. doi:10.1524/zkri.220.5.567.65075

    CAS  Google Scholar 

  63. Francis GP, Payne MC (1990) Finite basis set corrections to total energy pseudopotential calculations. J Phys: Condens Matter 2:4395–4404. doi:10.1088/0953-8984/2/19/007

    Google Scholar 

  64. Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure. Eur J Mineral 2:63–78. doi:10.1127/ejm/2/1/0063

    Article  CAS  Google Scholar 

  65. Onac BP, Effenberger HS (2007) Re-examination of berlinite (AlPO4) from the Cioclovina Cave, Romania. Am Mineral 92:1998–2001. doi:10.2138/am.2007.2581

    Article  CAS  Google Scholar 

  66. Díaz-Cabañas M-J, Barrett PA, Camblor MA (1998) Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chem Commun 1881–1882. doi:10.1039/a804800b

  67. Hriljac JA, Eddy MM, Cheetham AK, Donohue JA, Ray GJ (1993) Powder neutron diffraction and 29Si MAS NMR studies of siliceous zeolite-Y. J Solid State Chem 106:66–72. doi:10.1006/jssc.1993.1265

    Article  CAS  Google Scholar 

  68. Villaescusa LA, Lightfoot P, Teat SJ, Morris RE (2001) Variable-temperature microcrystal X-ray diffraction studies of negative thermal expansion in the pure silica zeolite IFR. J Am Chem Soc 123:5453–5459. doi:10.1021/ja015797o

    Article  CAS  Google Scholar 

  69. Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287–290. doi:10.1038/nature02909

    Article  CAS  Google Scholar 

  70. Marler B, Grünewald-Lüke A, Gies H (1998) Structure refinement of the as-synthesized and the calcined form of zeolite RUB-3 (RTE). Microporous Mesoporous Mater 26:49–59. doi:10.1016/S1387-1811(98)00213-3

    Article  CAS  Google Scholar 

  71. Wragg DS, Morris R, Burton AW, Zones SI, Ong K, Lee G (2007) The synthesis and structure of SSZ-73: an all-silica zeolite with an unusual framework topology. Chem Mater 19:3924–3932. doi:10.1021/cm0705284

    Article  CAS  Google Scholar 

  72. Williams JJ, Lethbridge ZAD, Clarkson GJ, Ashbrook SE, Evans KE, Walton RI (2009) The bulk material dissolution method with small amines for the synthesis of large crystals of the siliceous zeolites ZSM-22 and ZSM-48. Microporous Mesoporous Mater 119:259–266. doi:10.1016/j.micromeso.2008.10.023

    Article  CAS  Google Scholar 

  73. Kirchner RM, Grosse-Kunstleve RW, Pluth JJ, Wilson ST, Broach RW, Smith JV (2000) Structures of as-synthesized AlPO4-53(A), calcined dehydrated AlPO4-53(B), and AlPO4-53(C), a new phase determined by the FOCUS method. Microporous Mesoporous Mater 39:319–332. doi:10.1016/S1387-1811(00)00205-5

    Article  CAS  Google Scholar 

  74. Amri M, Walton RI (2009) Negative thermal expansion in the aluminum and gallium phosphate zeotypes with CHA and AEI structure types. Chem Mater 21:3380–3390. doi:10.1021/cm901140u

    Article  CAS  Google Scholar 

  75. Attfield MP, Sleight AW (1998) Exceptional negative thermal expansion in AlPO4-17. Chem Mater 10:2013–2019. doi:10.1021/cm9801587

    Article  CAS  Google Scholar 

  76. Afeworki M, Dorset DL, Kennedy GJ, Strohmaier KG (2006) Synthesis and characterization of a new microporous material. 1. Structure of Aluminophosphate EMM-3. Chem Mater 18:1697–1704. doi:10.1021/cm052174r

    Article  CAS  Google Scholar 

  77. Villaescusa LA, Barrett PA, Camblor MA (1998) Calcination of octadecasil: fluoride removal and symmetry of the pure SiO2 host. Chem Mater 10:3966–3973. doi:10.1021/cm9804113

    Article  CAS  Google Scholar 

  78. King RSP, Dann SE, Elsegood MRJ, Kelly PF, Mortimer RJ (2009) The synthesis, full characterisation and utilisation of template-free silica sodalite, a novel polymorph of silica. Chem A Eur J 15:5441–5443. doi:10.1002/chem.200802551

    Article  CAS  Google Scholar 

  79. Momma K, Izumi F (2011) VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. doi:10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  80. Downs RT, Gibbs GV, Bartelmehs KL, Boisen MB (1992) Variations of bond lengths and volumes of silicate tetrahedra with temperature. Am Mineral 77:751–757

    CAS  Google Scholar 

  81. Woodcock DA, Lightfoot P, Villaescusa LA, Diaz-Cabanas MJ, Camblor MA, Engberg D (1999) Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4: a neutron powder diffraction study. Chem Mater 11:2508–2514. doi:10.1021/cm991047q

    Article  CAS  Google Scholar 

  82. Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) The widespread occurrence of negative thermal expansion in zeolites. J Mater Chem 11:212–216. doi:10.1039/b002950p

    Article  CAS  Google Scholar 

  83. Al-Saidi WA, Voora VK, Jordan KD (2012) An assessment of the vdW-TS method for extended systems. J Chem Theory Comput 8:1503–1513. doi:10.1021/ct200618b

    Article  CAS  Google Scholar 

  84. Dobson JF (2014) Beyond pairwise additivity in London dispersion interactions. Int J Quantum Chem 114:1157–1161. doi:10.1002/qua.24635

    Article  CAS  Google Scholar 

  85. Reilly AM, Tkatchenko A (2015) van der Waals dispersion interactions in molecular materials: beyond pairwise additivity. Chem Sci 6:3289–3301. doi:10.1039/C5SC00410A

    Article  CAS  Google Scholar 

  86. Kronik L, Tkatchenko A (2014) Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc Chem Res 47:3208–3216. doi:10.1021/ar500144s

    Article  CAS  Google Scholar 

  87. Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Kristallogr 220:571–573. doi:10.1524/zkri.220.5.571.65065

    CAS  Google Scholar 

  88. Combariza AF, Gomez DA, Sastre G (2013) Simulating the properties of small pore silica zeolites using interatomic potentials. Chem Soc Rev 42:114–127. doi:10.1039/c2cs35243e

    Article  CAS  Google Scholar 

  89. Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem Soc Chem Commun 1271–1273. doi:10.1039/c39840001271

  90. Cygan RT, Liang J-J, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108:1255–1266. doi:10.1021/jp0363287

    Article  CAS  Google Scholar 

  91. Piccione PM, Laberty C, Yang S, Camblor MA, Navrotsky A, Davis ME (2000) Thermochemistry of pure-silica zeolites. J Phys Chem B 104:10001–10011. doi:10.1021/jp002148a

    Article  CAS  Google Scholar 

  92. Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, Bygrave PJ, Bylsma R, Campbell JE, Car R, Case DH, Chadha R, Cole JC, Cosburn K, Cuppen HM, Curtis F, Day GM, DiStasio RA Jr, Dzyabchenko A, van Eijck BP, Elking DM, van den Ende JA, Facelli JC, Ferraro MB, Fusti-Molnar L, Gatsiou C-A, Gee TS, de Gelder R, Ghiringhelli LM, Goto H, Grimme S, Guo R, Hofmann DWM, Hoja J, Hylton RK, Iuzzolino L, Jankiewicz W, de Jong DT, Kendrick J, de Klerk NJJ, Ko H-Y, Kuleshova LN, Li X, Lohani S, Leusen FJJ, Lund AM, Lv J, Ma Y, Marom N, Masunov AE, McCabe P, McMahon DP, Meekes H, Metz MP, Misquitta AJ, Mohamed S, Monserrat B, Needs RJ, Neumann MA, Nyman J, Obata S, Oberhofer H, Oganov AR, Orendt AM, Pagola GI, Pantelides CC, Pickard CJ, Podeszwa R, Price LS, Price SL, Pulido A, Read MG, Reuter K, Schneider E, Schober C, Shields GP, Singh P, Sugden IJ, Szalewicz K, Taylor CR, Tkatchenko A, Tuckerman ME, Vacarro F, Vasileiadis M, Vazquez-Mayagoitia A, Vogt L, Wang Y, Watson RE, de Wijs GA, Yang J, Zhu Q, Groom CR (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:439–459. doi:10.1107/S2052520616007447

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. F. and F. O. E. are grateful to Prof. Dr Andreas Lüttge and Dr Rolf Arvidson (Marum, Bremen) for generous access to the Asgard cluster, on which the DFT calculations were run. We would like to thank Dr FX Coudert (CNRS, ParisTech) for sharing the B3LYP-D2 structures with us, as well as Dr Ross Angel (Padova) for insightful discussions. M. F. is funded by the Central Research Development Funds (CRDF) of the University of Bremen (Funding line 04—Independent Projects for Post-Docs). F. F. and A. O. are grateful for support by the Wrocław Centre for Networking and Supercomputing (grant no. 172), providing access to the BIOVIA Materials Studio 8.0 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 85 kb)

Supplementary material 2 (XLSX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, M., Evers, F.O., Formalik, F. et al. Benchmarking DFT-GGA calculations for the structure optimisation of neutral-framework zeotypes. Theor Chem Acc 135, 257 (2016). https://doi.org/10.1007/s00214-016-2014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2014-6

Keywords

Navigation