Skip to main content
Log in

Propionic acid derivatives confined in mesoporous silica: monomers or dimers? The case of ibuprofen investigated by static and dynamic ab initio simulations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Confinement in mesoporous silica can greatly increase the solubility of pharmaceutical compounds. Propionic acid derivatives (a very popular class of drugs that include ibuprofen and ketoprofen) would greatly benefit from such technology, given their common apolar character. However, it is still debated whether, after confinement, these drugs are adsorbed on the pore walls as individual molecules or they keep the H-bonded dimeric structure that exists in their crystalline form. Their physical state inside the mesopores could have important consequences on the final performances of the drug delivery system. We employed accurate periodic density functional theory simulations, both static and dynamic, to investigate the issue. We simulated ibuprofen, as a model for all propionic acid derivatives, adsorbed both as a monomer and as a dimer inside a realistic model for the MCM-41 mesoporous silica. We found that adsorption is energetically favored in both cases, driven by both vdW and H-bond interactions. However, through ab initio molecular dynamics, we observed a continuous forming, breaking and reforming of these interactions. In the end, by comparing computed energetics, vibrational spectra and mobility, we were able to provide some important clues on the physical state of this class of drugs inside mesoporous silica, helping to define which drug family (monomer or dimer) is more probable after confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  2. Kresge CT, Roth WJ (2013) The discovery of mesoporous molecular sieves from the twenty year perspective. Chem Soc Rev 42:3663–3670

    Article  CAS  Google Scholar 

  3. Ciesla U, Schüth F (1999) Ordered mesoporous materials. Microp Mesop Mater 27:131–149

    Article  CAS  Google Scholar 

  4. Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2419

    Article  CAS  Google Scholar 

  5. Anselmo AC, Mitragotri S (2014) An overview of clinical and commercial impact of drug delivery systems. J Control Release 190:15–28

    Article  CAS  Google Scholar 

  6. Fahr A, Liu X (2007) Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 4:403–416

    Article  CAS  Google Scholar 

  7. Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311

    Article  CAS  Google Scholar 

  8. Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558

    Article  Google Scholar 

  9. Katzung BG (2007) Basic and clinical pharmacology. McGraw-Hill Medical, New York

  10. Beetge E, du Plessis J, Müller DG et al (2000) The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAID’s on their transdermal absorption. Int J Pharm 193:261–264

    Article  CAS  Google Scholar 

  11. Rimola A, Costa D, Sodupe M et al (2013) Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem Rev 113:4216–4313

    Article  CAS  Google Scholar 

  12. Delle Piane M, Corno M, Ugliengo P (2013) Does dispersion dominate over H-bonds in drug-surface interactions? The case of silica-based materials as excipients and drug-delivery agents. J Chem Theory Comput 9:2404–2415

    Article  CAS  Google Scholar 

  13. Delle Piane M, Corno M, Pedone A et al (2014) Large-scale B3LYP simulations of ibuprofen adsorbed in MCM-41 mesoporous silica as drug delivery system. J Phys Chem C 118:26737–26749

    Article  Google Scholar 

  14. Delle Piane M, Vaccari S, Corno M, Ugliengo P (2014) Silica-based materials as drug adsorbents: first principle investigation on the role of water microsolvation on ibuprofen adsorption. J Phys Chem A 118:5801–5807

    CAS  Google Scholar 

  15. Shankland N, Wilson CC, Florence AJ, Cox PJ (1997) Refinement of ibuprofen at 100 K by single-crystal pulsed neutron diffraction. Acta Cryst 53:951–954

    Article  Google Scholar 

  16. Briard P, Rossi JC (1990) Ketoprofene. Acta Crystallogr Sect C 46:1036–1038

    Article  Google Scholar 

  17. Flippen JL, Gilardi RD (1975) +)-2-(2-Fluoro-4-biphenyl)propionic acid (flurbiprofen. Acta Crystallogr Sect B 31:926–928

    Article  Google Scholar 

  18. Brás AR, Noronha JP, Antunes AMM et al (2008) Molecular motions in amorphous ibuprofen as studied by broadband dielectric spectroscopy. J Phys Chem B 112:11087–11099

    Article  Google Scholar 

  19. Azais T, Tourne-Peteilh C, Aussenac F et al (2006) Solid-state NMR study of ibuprofen confined in MCM-41 material. Chem Mater 18:6382–6390

    Article  Google Scholar 

  20. Guenneau F, Panesar K, Nossov A et al (2013) Probing the mobility of ibuprofen confined in MCM-41 materials using MAS-PFG NMR and hyperpolarised-129Xe NMR spectroscopy. Phys Chem Chem Phys 15:18805–18808

    Article  CAS  Google Scholar 

  21. Bras AR, Merino EG, Neves PD et al (2011) Amorphous ibuprofen confined in nanostructured silica materials: a dynamical approach. J Phys Chem C 115:4616–4623

    Article  CAS  Google Scholar 

  22. Dovesi R, Orlando R, Erba A et al (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317

    Article  CAS  Google Scholar 

  23. Orlando R, Delle Piane M, Bush IJ et al (2012) A new massively parallel version of CRYSTAL for large systems on high performance computing architectures. J Comput Chem 33:2276–2284

    Article  CAS  Google Scholar 

  24. Hutter J, Iannuzzi M, Schiffmann F, Vandevondele J (2014) Cp2 k: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci 4:15–25

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  28. Dovesi R, Saunders VR, Roetti C et al (2014) CRYSTAL14, User’s Manual. Università di Torino, Torino, Italy

  29. Monkhorst HJ, Pack JD (1976) Special Points for Brillouin-Zone Integration. Phys Rev B 8:5188–5192

    Article  Google Scholar 

  30. Saunders VR, Hillier IH (1973) A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions. Int J Quantum Chem 7:699–705

    Article  Google Scholar 

  31. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  32. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10:405–410

    Article  CAS  Google Scholar 

  33. Nada R, Nicholas JB, McCarthy MI, Hess AC (1996) Basis Sets for ab initio Periodic Hartree–Fock Studies of Zeolite/Adsorbate Interactions: He, Ne, and Ar in Silica Sodalite. Int J Quantum Chem 60:809–820

    Article  CAS  Google Scholar 

  34. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms: Li to Kr. J Chem Phys 97:2571

    Article  Google Scholar 

  35. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math 6:76–90

    Article  Google Scholar 

  36. Bernhard Schlegel H (1984) Estimating the hessian for gradient-type geometry optimizations. Theor Chim Acta 66:333–340

    Article  Google Scholar 

  37. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  38. VandeVondele J, Krack M, Mohamed F et al (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp Phys Comm 167:103–128

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  40. Goedecker S, Teter M, Hutter J (1996) Separable dual space Gaussian pseudo-potentials. Phys Rev B 54:1703–1710

    Article  CAS  Google Scholar 

  41. VandeVondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys 127:114105

    Article  Google Scholar 

  42. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  Google Scholar 

  43. Ugliengo P, Sodupe M, Musso F et al (2008) Realistic models of hydroxylated amorphous silica surfaces and MCM-41 mesoporous material simulated by large-scale periodic B3LYP calculations. Adv Mater 20:4579–4583

    Article  CAS  Google Scholar 

  44. Coasne B, Ugliengo P (2012) Atomistic model of micelle-templated mesoporous silicas: structural, morphological, and adsorption properties. Langmuir 28:11131–11141

    Article  CAS  Google Scholar 

  45. Vueba ML, Pina ME, Batista de Carvalho LAE (2008) Conformational stability of ibuprofen: assessed by DFT calculations and optical vibrational spectroscopy. J Pharm Sci 97:845–859

    Article  CAS  Google Scholar 

  46. Freer AA, Bunyan JM, Shankland N, Sheen DB (1993) Structure of (S)-(+)-ibuprofen. Acta Cryst C 49:1378–1380

    Article  Google Scholar 

  47. Gashi Z, Censi R, Malaj L et al (2009) Differences in the interaction between aryl propionic acid derivatives and poly(vinylpyrrolidone) K30: a multi-methodological approach. J Pharm Sci 98:4216–4228

    Article  CAS  Google Scholar 

  48. Ugliengo P, Viterbo D, Chiari G (1993) MOLDRAW: molecular graphics on a personal computer. Z Krist 207:9–23

    CAS  Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Models have been visualized and manipulated by MOLDRAW [48] and VMD [49]. Figures have been rendered with the Tachyon ray tracer, built into VMD. The vast majority of the calculations have been carried out thanks to the PRACE (PaRtnership for Advanced Computing in Europe) project pra50810 “Mesoporous silica for drug delivery: a quantum mechanical simulation” (20 million CPU hours on SuperMUC, LRZ, Munich, Germany). CRYSTAL developers are acknowledged for providing up to date development versions of the code and fruitful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Ugliengo.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delle Piane, M., Corno, M. & Ugliengo, P. Propionic acid derivatives confined in mesoporous silica: monomers or dimers? The case of ibuprofen investigated by static and dynamic ab initio simulations. Theor Chem Acc 135, 53 (2016). https://doi.org/10.1007/s00214-016-1817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1817-9

Keywords

Navigation