Skip to main content
Log in

Theoretical investigation on the reaction mechanism and kinetics of benzyl alcohol with OH radical

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanism and kinetics for the reaction of benzyl alcohol with OH radical have been studied by using the hybrid meta-density functional theory (M06-2X) and the conventional transition state theory. The results show that six van der Waals complexes are formed firstly as the OH radical approaches benzyl alcohol from different directions, and then the OH radical may abstract the H atoms from the –CH2OH group and the benzene ring, or adduct to C atoms of the benzene ring. Among all the possible reaction channels, the alkyl hydrogen abstraction from the –CH2OH group and the ipso and ortho-C addition are dominant. The calculated overall rate constant is 2.61 × 10−11 cm3 molecule−1 s−1, and the branching ratios of the hydrogen abstraction and the addition reactions are 0.23 and 0.77, respectively, at 298 K. As the temperature rises from 250 to 400 K, the branching ratio of the hydrogen abstraction reaction increases while that of the addition reaction decreases. The calculation results are in good agreement with the available experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bloss C, Wagner V, Jenkin ME, Volkamer R, Bloss WJ, Lee JD, Heard DE, Wirtz K, Martin-Reviejo M, Rea G, Wenger JC, Pilling MJ (2005) Atmos Chem Phys 5:641–664

    Article  CAS  Google Scholar 

  2. Derwent RG, Jenkin ME, Saunders SM (1996) Atmos Environ 30:181–199

    Article  CAS  Google Scholar 

  3. Forstner HJL, Flagan RC, Seinfeld JH (1997) Environ Sci Technol 31:1345–1358

    Article  CAS  Google Scholar 

  4. Atkinson R, Arey J (2003) Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  5. Hollman DS, Simmonett AC, Schaefer HF (2011) Phys Chem Chem Phys 13:2214–2221

    Article  CAS  Google Scholar 

  6. Tokmakov IV, Lin MC (2002) J Phys Chem A 106:11309–11326

    Article  CAS  Google Scholar 

  7. Suh I, Zhang R, Molina LT, Molina MJ (2003) J Am Chem Soc 125:12655–12665

    Article  CAS  Google Scholar 

  8. Uc VH, Alvarez-Idaboy JR, Galano A, Garcia-Cruz I, Vivier-Bunge A (2006) J Phys Chem A 110:10155–10162

    Article  CAS  Google Scholar 

  9. Uc VH, Alvarez-Idaboy JR, Galano A, Vivier-Bunge A (2008) J Phys Chem A 112:7608–7615

    Article  CAS  Google Scholar 

  10. Birdsall AW, Elrod MJ (2011) J Phys Chem A 115:5397–5407

    Article  CAS  Google Scholar 

  11. Noda J, Volkamer R, Molina MJ (2009) J Phys Chem A 113:9658–9666

    Article  CAS  Google Scholar 

  12. Wu P, Guo S, Li S, Tao F-M (2011) Comput Thero Chem 971:51–57

    Article  CAS  Google Scholar 

  13. Iuga C, Galano A, Vivier-Bunge A (2008) ChemPhysChem 9:1453–1459

    Article  CAS  Google Scholar 

  14. Harrison JC, Wells JR (2009) Atmos Environ 43:798–804

    Article  CAS  Google Scholar 

  15. Harrison JC, Wells JR (2012) Int J Chem Kinet 44:778–788

    Article  CAS  Google Scholar 

  16. Bernard F, Magneron I, Eyglunent G, Daele V, Wallington TJ, Hurley MD, Mellouki A (2013) Environ Sci Technol 47:3182–3189

    CAS  Google Scholar 

  17. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  18. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  19. Piletic IR, Edney EO, Bartolotti LJ (2013) Phys Chem Chem Phys 15:18065

    Article  CAS  Google Scholar 

  20. Balaganesh M, Dash MR, Rajakumar B (2014) J Phys Chem A 118:5272–5278

    Article  CAS  Google Scholar 

  21. Srinivasulu G, Rajakumar B (2015) J Phys Chem A 119:9294–9306

    Article  CAS  Google Scholar 

  22. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  23. Miller JA, Klippenstein SJ (2003) J Phys Chem A 107:2680–2692

    Article  CAS  Google Scholar 

  24. Frisch MJ et al (2013) Gaussian 09, Revision D01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  25. Li W, Zeng Y, Zhang X, Zheng S, Meng L (2014) Phys Chem Chem Phys 16:19282–19289

    Article  CAS  Google Scholar 

  26. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1991

    Article  CAS  Google Scholar 

  27. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  28. Duncan WT, Bell RL, Truong TN (1998) J Comput Chem 19:1039–1052

    Article  CAS  Google Scholar 

  29. Singleton DL, Cvetanovic RJ (1976) J Am Chem Soc 98:6812–6819

    Article  CAS  Google Scholar 

  30. Alvarez-Idaboy JR, Mora-Diez N, Boyd RJ, Vivier-Bunge A (2001) J Am Chem Soc 123:2018–2024

    Article  CAS  Google Scholar 

  31. Alvarez-Idaboy JR, Mora-Diez N, Vivier-Bunge A (2000) J Am Chem Soc 122:3715–3720

    Article  CAS  Google Scholar 

  32. Galano A, Alvarez-Idaboy JR, Ruiz-Santoyo ME, Vivier-Bunge A (2002) J Phys Chem A 106:9520–9528

    Article  Google Scholar 

  33. Olivella S, Sole A (2008) J Chem Theory Comput 4:941–950

    Article  CAS  Google Scholar 

  34. Vega-Rodriguez A, Alvarez-Idaboy JR (2009) Phys Chem Chem Phys 11:7649–7658

    Article  CAS  Google Scholar 

  35. Truong TN, Truhlar DG (1990) J Chem Phys 93:1761–1769

    Article  CAS  Google Scholar 

  36. Ayala PY, Schlegel HB (1998) J Chem Phys 108:2314–2325

    Article  CAS  Google Scholar 

  37. Dessent CEH, Geppert WD, Ullrich S, Muller-Dethlefs K (2000) Chem Phys Lett 319:375–384

    Article  CAS  Google Scholar 

  38. Mons M, Robertson EG, Simons JP (2000) J Phys Chem A 104:1430–1437

    Article  CAS  Google Scholar 

  39. Utzat K, Restrepo AA, Bohn RK, Michels HH (2004) Int J Quantum Chem 100:964–972

    Article  CAS  Google Scholar 

  40. Trætterberg M, Østensen H, Ragnhild S (1980) Acta Chem Scand 34:449–454

    Article  Google Scholar 

  41. Sosa C, Schlegel HB (1987) J Am Chem Soc 109:4193–4198

    Article  CAS  Google Scholar 

  42. Uc VH, García-Cruz I, Hernández-Laguna A, Vivier-Bunge A (2000) J Phys Chem A 104:7847–7855

    Article  CAS  Google Scholar 

  43. Sekušak S, Sabljić A (1997) Chem Phys Lett 272:353–360

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21173022) and the foundation of Shijiazhuang University (No. 14BS003, 10ZDA001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowen Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Lv, L. & Zhang, S. Theoretical investigation on the reaction mechanism and kinetics of benzyl alcohol with OH radical. Theor Chem Acc 135, 51 (2016). https://doi.org/10.1007/s00214-016-1811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1811-2

Keywords

Navigation