Skip to main content
Log in

Insight into the catalytic activity for a series of synthesized and newly designed phosphonium-based ionic liquids on the fixation of carbon dioxide

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Various catalysts have been explored for the coupling reaction of carbon dioxide with propylene oxide in the past decade. However, the search for high-efficiency single-component catalyst in the absence of metal and solvent is still a challenging issue. In this work, the catalytic activity of a series of functionalized phosphonium-based ionic liquids (FPBILs) is investigated by density functional theory. The influences of functional group, chain length of cation, and anion on the catalytic performance have been explored. The carboxyl-functionalized FPBIL with the moderate alkyl chain length presents the best catalytic activity among all investigated catalysts. On the basis of above information, a new sulfonyl hydroxide-functionalized FPBIL is designed. Moreover, its catalytic activity is theoretically examined as compared with that of carboxyl-functionalized FPBIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakakura T, Choi JC, Yasuda H (2007) Chem Rev 107:2365–2387

    Article  CAS  Google Scholar 

  2. North M, Pasquale R, Young C (2010) Green Chem 12:1514–1539

    Article  CAS  Google Scholar 

  3. Lu XB, Darensbourg DJ (2012) Chem Soc Rev 41:1462–1484

    Article  CAS  Google Scholar 

  4. Darensbourg DJ, Holtcamp MW (1996) Coord Chem Rev 153:155–174

    Article  CAS  Google Scholar 

  5. Sakakura T, Kohno K (2009) Chem Commun 1312–1330

  6. Xiong YB, Wang YJ, Wang H, Wang RM, Cui ZP (2012) J Appl Polym Sci 123:1486–1493

    Article  CAS  Google Scholar 

  7. Du Y, Cai F, Kong DL, He LN (2005) Green Chem 7:518–523

    Article  CAS  Google Scholar 

  8. Clements JH (2003) Ind Eng Chem Res 42:663–674

    Article  CAS  Google Scholar 

  9. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Chem Rev 110:4554–4581

    Article  Google Scholar 

  10. Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T (1997) Chem Commun 12:1129–1130

    Article  Google Scholar 

  11. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) J Am Chem Soc 121:4526–4527

    Article  CAS  Google Scholar 

  12. Han LN, Park SW, Park DW (2009) Energy Environ Sci 2:1286–1292

    Article  CAS  Google Scholar 

  13. Kim HS, Kim JJ, Kim H, Jang HG (2003) J Catal 220:44–46

    Article  CAS  Google Scholar 

  14. Sun JM, Fujita SI, Zhao FY, Arai M (2004) Green Chem 6:613–616

    Article  CAS  Google Scholar 

  15. Cho HC, Lee HS, Chun J, Lee SM, Kim HJ, Son SU (2011) Chem Commun 47:917–919

    Article  CAS  Google Scholar 

  16. Melendez J, North M (2009) Chem Commun 18:2577–2579

    Article  Google Scholar 

  17. Buchard A, Kember MR, Sandeman KG, Williams CK (2011) Chem Commun 47:212–214

    Article  CAS  Google Scholar 

  18. Decortes A, Belmonte MM, Benet-Buchholz J, Kleij AW (2010) Chem Commun 46:4580–4582

    Article  CAS  Google Scholar 

  19. Alvaro M, Baleizao C, Carbonell E, Ghoul ME, García H, Gigante B (2005) Tetrahedron 61:12131–12139

    Article  CAS  Google Scholar 

  20. Adhikari D, Nguyen ST, Baik MH (2014) Chem Commun 50:2676–2678

    Article  CAS  Google Scholar 

  21. SRivastava R, Srinivas D, Ratnasamy P (2004) Stud Surf Sci Catal 154:2703–2710

    Google Scholar 

  22. Wang TT, Xie Y, Deng WQ (2014) J Phys Chem A 118:9239–9243

    Article  CAS  Google Scholar 

  23. Castro-Gómez F, Salassa G, Kleij AW, Bo C (2013) Chem Eur J 19:6289–6298

  24. Kim HS, Kim JJ, Kwon HN, Chung MJ, Lee BG, Jang HG (2002) J Catal 205:226–229

    Article  CAS  Google Scholar 

  25. Zhou H, Zhang WZ, Liu CH, Qu JP, Lu XB (2008) J Org Chem 73:8039–8044

    Article  CAS  Google Scholar 

  26. Barbarini A, Maggi R, Mazzacani A, Giovanni M, Sartori G, Sartorio R (2003) Tetrahedron Lett 44:2931–2934

    Article  CAS  Google Scholar 

  27. Sun J, Zhang SJ, Cheng WG, Ren JY (2008) Tetrahedron Lett 49:3588–3591

    Article  CAS  Google Scholar 

  28. Sun J, Han LJ, Cheng WG, Wang JQ, Zhang XP, Zhang SJ (2011) ChemSusChem 4:502–507

    Article  CAS  Google Scholar 

  29. Dai WL, Jin B, Luo SL, Luo XB, Tu XM, Au CT (2014) Appl Catal A-Gen 470:183–188

    Article  CAS  Google Scholar 

  30. Becke AD (1993) J Chem Phy 98:5648–5652

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A02. Gaussian Inc., Wallingford

    Google Scholar 

  32. Gill PMW, Johnson BG, Pople JA, Frisch MJ (1992) Chem Phys Lett 197:499–505

    Article  CAS  Google Scholar 

  33. Glukhovstev MN, Pross A, McGrath MP, Radom L (1995) J Chem Phys 103:1878–1885

    Article  Google Scholar 

  34. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  35. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  36. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  37. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  38. Wang L, Jin XF, Li P, Zhang JL, He HY, Zhang SJ (2014) Ind Eng Chem Res 53:8426–8435

    Article  CAS  Google Scholar 

  39. Zhang JZ, Jia C, Dong HF, Wang JQ, Zhang XP, Zhang SJ (2013) Ind Eng Chem Res 52:5835–5841

    Article  CAS  Google Scholar 

  40. Dai WL, Jin B, Luo SL, Luo XB, Tu XM, Au CT (2013) J Mol Catal A-Chem 378:326–332

    Article  CAS  Google Scholar 

  41. Wang F, Xu CZ, Li Z, Xia CG, Chen J (2014) J Mol Catal A-Chem 385:133–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financial supported by the National Natural Science Foundation of China (21376063, 21476061), Program for He’nan Innovative Research Team in University (15IRTSTHN005), Henan Provincial Natural Science Foundation of China (134300510008, 144300510032, 142300410120), Science Foundation of He’nan Educational Committee (14A150034), and the Foundation for University Key Teachers from the He’nan Educational Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglai Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, P., Li, Y. et al. Insight into the catalytic activity for a series of synthesized and newly designed phosphonium-based ionic liquids on the fixation of carbon dioxide. Theor Chem Acc 134, 75 (2015). https://doi.org/10.1007/s00214-015-1673-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1673-z

Keywords

Navigation