Skip to main content
Log in

Carbide clusterfullerenes with odd number of carbon atoms: molecular and electronic structures of Sc4C@C80, Sc4C@C82, and Sc4C3@C80

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Arc-discharge synthesis of Sc-based endohedral metallofullerenes in the presence of methane afforded formation of two new metallofullerene species, Sc4C81 and Sc4C83, but their chromatographic separation proved to be difficult because of insufficient stability. Computational DFT studies are performed to reveal the possible molecular structures of these species. The first structural conjectures were based on the consideration of the Sc–carbon clusters comprising four Sc atoms and one or three carbon atoms in an icosahedral C80-I h (7) cage. For Sc4C@C80, the tetrahedral Sc4 cluster with the central μ4-C atom was found to be 10 kJ/mol stable than the square cluster. For Sc4C3@C80, our calculation showed that the most stable is the Sc4C3 cluster, in which the triangular C3 moiety is η3- and η2-coordinated by Sc atoms. Whereas Sc4C@C80 has rather small HOMO–LUMO gap and low ionization potential, the HOMO–LUMO gap of Sc4C3@C80 is substantially higher and exceeds that of Sc4C2@C80. Thus, Sc4C3@C80 is predicted to be a kinetically stable endohedral fullerene. At the same time, its thermodynamic stability is rather low and Sc4C@C82C 2v (9) is predicted to be 101 kJ/mol lower in energy than Sc4C3@C80-I h (7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Popov AA, Yang S, Dunsch L (2013) Endohedral Fullerenes. Chem Rev 113(8):5989–6113

    Article  CAS  Google Scholar 

  2. Lu X, Feng L, Akasaka T, Nagase S (2012) Current status and future developments of endohedral metallofullerenes. Chem Soc Rev 41(23):7723–7760

    Article  Google Scholar 

  3. Rodriguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563

    Article  CAS  Google Scholar 

  4. Popov AA, Avdoshenko SM, Pendás AM, Dunsch L (2012) Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun 48:8031–8050

    Article  CAS  Google Scholar 

  5. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401(6748):55–57

    Article  CAS  Google Scholar 

  6. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) A Distorted Tetrahedral Metal Oxide Cluster inside an Icosahedral Carbon Cage. Synthesis, Isolation, and Structural Characterization of Sc43-O)2@I h -C80. J Am Chem Soc 130(36):11844–11845

    Article  CAS  Google Scholar 

  7. Dunsch L, Yang S, Zhang L, Svitova A, Oswald S, Popov AA (2010) Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J Am Chem Soc 132(15):5413–5421

    Article  CAS  Google Scholar 

  8. Yang S, Liu F, Chen C, Jiao M, Wei T (2011) Fullerenes encaging metal clusters-clusterfullerenes. Chem Commun 47(43):11822–11839

    Article  CAS  Google Scholar 

  9. Zhang J, Stevenson S, Dorn HC (2013) Trimetallic nitride template endohedral metallofullerenes: discovery, structural characterization, reactivity, and applications. Acc Chem Res 46(7):1548–1557

    Article  CAS  Google Scholar 

  10. Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3(8):1298–1320

    Article  CAS  Google Scholar 

  11. Lu X, Akasaka T, Nagase S (2013) Carbide cluster metallofullerenes: structure, properties, and possible origin. Acc Chem Res 46(7):1627–1635

    Article  CAS  Google Scholar 

  12. Jin P, Tang C, Chen Z (2014) Carbon atoms trapped in cages: metal carbide clusterfullerenes. Coord Chem Rev 270–271:89–111

    Article  Google Scholar 

  13. Wang CR, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew Chem Int Ed 40(2):397–399

    Article  CAS  Google Scholar 

  14. Zhang J, Fuhrer T, Fu W, Ge J, Bearden DW, Dallas JL, Duchamp JC, Walker KL, Champion H, Azurmendi HF, Harich K, Dorn HC (2012) Nanoscale fullerene compression of a yttrium carbide cluster. J Am Chem Soc 134(20):8487–8493

    Article  CAS  Google Scholar 

  15. Feng Y, Wang T, Wu J, Feng L, Xiang J, Ma Y, Zhang Z, Jiang L, Shu C, Wang C (2013) Structural and electronic studies of metal carbide clusterfullerene Sc2C2@C s -C72. Nanoscale 5(15):6704–6707

    Article  CAS  Google Scholar 

  16. Kurihara H, Lu X, Iiduka Y, Mizorogi N, Slanina Z, Tsuchiya T, Akasaka T, Nagase S (2011) Sc2C2@C80 rather than Sc2@C82: templated formation of unexpected C 2v (5)-C80 and temperature-dependent dynamic motion of internal Sc2C2 cluster. J Am Chem Soc 133(8):2382–2385

    Article  CAS  Google Scholar 

  17. Nishibori E, Ishihara M, Takata M, Sakata M, Ito Y, Inoue T, Shinohara H (2006) Bent (metal)2C2 clusters encapsulated in (Sc2C2)@C82(III) and (Y2C2)@C82(III) metallofullerenes. Chem Phys Lett 433(1–3):120–124

    Article  CAS  Google Scholar 

  18. Iiduka Y, Wakahara T, Nakajima K, Tsuchiya T, Nakahodo T, Maeda Y, Akasaka T, Mizorogi N, Nagase S (2006) 13C NMR spectroscopic study of scandium dimetallofullerene, Sc2@C84 vs. Sc2C2@C82. Chem Commun 19:2057–2059

    Article  Google Scholar 

  19. Yang H, Lu C, Liu Z, Jin H, Che Y, Olmstead MM, Balch AL (2008) Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. J Am Chem Soc 130(51):17296–17300

    Article  CAS  Google Scholar 

  20. Liu F, Wei T, Wang S, Guan J, Lu X, Yang S (2014) A bent Tb2C2 cluster encaged in a C s (6)-C82 cage: synthesis, isolation and X-ray crystallographic study. Fuller Nanotub Carbon Nanostruct 22(1–3):215–226

    Article  Google Scholar 

  21. Inoue T, Tomiyama T, Sugai T, Okazaki T, Suematsu T, Fujii N, Utsumi H, Nojima K, Shinohara H (2004) Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (Isomers I, II, and III). J Phys Chem B 108(23):7573–7579

    Article  CAS  Google Scholar 

  22. Inoue T, Tomiyama T, Sugai T, Shinohara H (2003) Spectroscopic and structural study of Y2C2 carbide encapsulating endohedral metallofullerene: (Y2C2)@C82. Chem Phys Lett 382(3–4):226–231

    Article  CAS  Google Scholar 

  23. Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K, Nagase S (2005) Structural determination of metallofullerene Sc3C82 revisited: a surprising finding. J Am Chem Soc 127(36):12500–12501

    Article  CAS  Google Scholar 

  24. Xu W, Wang T-S, Wu J-Y, Ma Y-H, Zheng J-P, Li H, Wang B, Jiang L, Shu C-Y, Wang C-R (2011) Entrapped planar trimetallic carbide in a fullerene cage: synthesis, isolation, and spectroscopic studies of Lu3C2@C88. J Phys Chem C 115(2):402–405

    Article  CAS  Google Scholar 

  25. Wang T-S, Chen N, Xiang J-F, Li B, Wu J-Y, Xu W, Jiang L, Tan K, Shu C-Y, Lu X, Wang C-R (2009) Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80. J Am Chem Soc 131(46):16646–16647

    Article  CAS  Google Scholar 

  26. Feng Y, Wang T, Wu J, Zhang Z, Jiang L, Han H, Wang C (2014) Electron-spin excitation by implanting hydrogen into metallofullerene: the synthesis and spectroscopic characterization of Sc4C2H@I h -C80. Chem Commun 50(81):12166–12168

    Article  CAS  Google Scholar 

  27. Krause M, Ziegs F, Popov AA, Dunsch L (2007) Entrapped bonded hydrogen in a fullerene: the five-atom cluster Sc3CH in C80. ChemPhysChem 8(4):537–540

    Article  CAS  Google Scholar 

  28. Svitova AL, Ghiassi K, Schlesier C, Junghans K, Zhang Y, Olmstead M, Balch A, Dunsch L, Popov AA (2014) Endohedral fullerene with μ3-carbido ligand and Titanium-Carbon double bond stabilized inside a carbon cage. Nat Commun 5:3568. doi:10.1038/ncomms4568

    Article  CAS  Google Scholar 

  29. Wang T-S, Feng L, Wu J-Y, Xu W, Xiang J-F, Tan K, Ma Y-H, Zheng J-P, Jiang L, Lu X, Shu C-Y, Wang C-R (2010) Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@C80-I h . J Am Chem Soc 132(46):16362–16364

    Article  CAS  Google Scholar 

  30. Wu J, Wang T, Ma Y, Jiang L, Shu C, Wang C (2011) Synthesis, isolation, characterization, and theoretical studies of Sc3NC@C78-C 2. J Phys Chem C 115(48):23755–23759

    Article  CAS  Google Scholar 

  31. Yang S, Chen C, Liu F, Xie Y, Li F, Jiao M, Suzuki M, Wei T, Wang S, Chen Z, Lu X, Akasaka T (2013) An Improbable monometallic cluster entrapped in a popular fullerene cage: yCN@C s (6)-C82. Sci Rep 3:1487

    Google Scholar 

  32. Liu F, Wang S, Guan J, Wei T, Zeng M, Yang S (2014) Putting a terbium-monometallic cyanide cluster into the C82 fullerene cage: tbCN@C 2(5)-C82. Inorg Chem 53(10):5201–5205

    Article  CAS  Google Scholar 

  33. Wang T, Wu J, Feng Y (2014) Scandium carbide/cyanide alloyed cluster inside fullerene cage: synthesis and structural studies of Sc33-C2)(μ3-CN)@I h -C80. Dalton Trans 43:16270–16274

    Article  CAS  Google Scholar 

  34. Tan K, Lu X, Wang CR (2006) Unprecedented mu4-C2 6− anion in Sc4C2@C80. J Phys Chem B 110(23):11098–11102

    Article  CAS  Google Scholar 

  35. Mercado BQ, Olmstead MM, Beavers CM, Easterling ML, Stevenson S, Mackey MA, Coumbe CE, Phillips JD, Phillips JP, Poblet JM, Balch AL (2010) A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc43-O)3@I h -C80. Chem Commun 46:279–281

    Article  CAS  Google Scholar 

  36. Suzuki T, Maruyama Y, Kato T, Kikuchi K, Nakao Y, Achiba Y, Kobayashi K, Nagase S (1995) Electrochemistry and Ab-Initio Study of the Dimetallofullerene La2@C80. Angew Chem Int Ed Engl 34(10):1094–1096

    Article  CAS  Google Scholar 

  37. Nakao K, Kurita N, Fujita M (1994) Ab-initio molecular-orbital calculation for C70 and seven isomers of C80. Phys Rev B 49(16):11415–11420

    Article  CAS  Google Scholar 

  38. Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68–98): a density functional theory study. J Am Chem Soc 129(38):11835–11849

    Article  CAS  Google Scholar 

  39. Rodriguez-Fortea A, Alegret N, Balch AL, Poblet JM (2010) The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat Chem 2(11):955–961

    Article  CAS  Google Scholar 

  40. Wang T, Wang C (2014) Endohedral metallofullerenes based on spherical I h -C80 Cage: molecular structures and paramagnetic properties. Acc Chem Res 47(2):450–458

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  42. Laikov DN, Ustynuk YA (2005) PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ Chem Bull 54(3):820–826

    Article  CAS  Google Scholar 

  43. Laikov DN (2005) A new class of atomic basis functions for accurate electronic structure calculations of molecules. Chem Phys Lett 416(1–3):116–120

    Article  CAS  Google Scholar 

  44. Laikov DN (1997) Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem Phys Lett 281:151–156

    Article  CAS  Google Scholar 

  45. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2(1):73–78

    Article  CAS  Google Scholar 

  46. Neese F (2010) ORCA, an ab initio, density functional and semiempirical program package, Version 2.8. Institute for physical and theoretical chemistry, Bonn

    Google Scholar 

  47. Keith TA (2014) AIMAll (Version 14.04.17), http://aim.tkgristmill.com

  48. Lu Q, Song W, Meng J, Wan J (2013) Theoretical study on aluminum carbide endohedral fullerene-Al4C@C80. J Mol Model 19(3):1205–1209

    Article  CAS  Google Scholar 

  49. Kurihara H, Lu X, Iiduka Y, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S, Akasaka T (2012) Sc2@C 3v (8)-C82 vs. Sc2C2@C 3v (8)-C82: drastic effect of C2 capture on the redox properties of scandium metallofullerenes. Chem Commun 48:1290–1292

    Article  CAS  Google Scholar 

  50. Valencia R, Rodriguez-Fortea A, Stevenson S, Balch AL, Poblet JM (2009) Electronic Structures of Scandium Oxide Endohedral Metallofullerenes, Sc43-O)n@I h -C80 (n = 2, 3). Inorg Chem 48:5957–5961

    Article  CAS  Google Scholar 

  51. Popov AA, Chen N, Pinzón JR, Stevenson S, Echegoyen LA, Dunsch L (2012) Redox-active scandium oxide cluster inside a fullerene cage: spectroscopic, voltammetric, electron spin resonance spectroelectrochemical, and extended density functional theory study of Sc4O2@C80 and its ion radicals. J Am Chem Soc 134(48):19607–19618

    Article  CAS  Google Scholar 

  52. Popov AA, Zhang L, Dunsch L (2010) A pseudoatom in a cage: trimetallofullerene Y3@C80 Mimics Y3N@C80 with nitrogen substituted by a pseudoatom. ACS Nano 4(2):795–802

    Article  CAS  Google Scholar 

  53. Popov AA, Dunsch L (2009) The bonding situation in endohedral metallofullerenes as studied by quantum theory of atoms in molecules (QTAIM). Chem Eur J 15(38):9707–9729

    Article  CAS  Google Scholar 

  54. PvR Schleyer, Maerker C, Dransfeld A, Jiao H, Hommes NJRVE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318

    Article  Google Scholar 

  55. Popov AA (2009) Metal-cage bonding molecular structures and vibrational spectra of endohedral fullerenes: bridging experiment and theory. J Comput Theor Nanosci 6(2):292–317

    Article  CAS  Google Scholar 

  56. Popov AA, Kästner C, Krause M, Dunsch L (2014) Carbon Cage Vibrations of M@C82 and M2@C2n (M = La, Ce; 2n = 72, 78, 80): the Role of the Metal Atoms. Fuller Nanotub Carbon Nanostruct 22(1–3):202–214

    Article  CAS  Google Scholar 

  57. Krause M, Kuzmany H, Georgi P, Dunsch L, Vietze K, Seifert G (2001) Structure and stability of endohedral fullerene Sc3N@C80: a Raman, infrared, and theoretical analysis. J Chem Phys 115(14):6596–6605

    Article  CAS  Google Scholar 

  58. Cao BP, Wakahara T, Tsuchiya T, Kondo M, Maeda Y, Rahman GMA, Akasaka T, Kobayashi K, Nagase S, Yamamoto K (2004) Isolation, characterization, and theoretical study of La2@C78. J Am Chem Soc 126(30):9164–9165

    Article  CAS  Google Scholar 

  59. Yamada M, Wakahara T, Tsuchiya T, Maeda Y, Kako M, Akasaka T, Yoza K, Horn E, Mizorogi N, Nagase S (2008) Location of the metal atoms in Ce2@C78 and its bis-silylated derivative. Chem Commun (5):558–560. doi:10.1039/B712568B

  60. Olmstead MM, de Bettencourt-Dias A, Duchamp JC, Stevenson S, Marciu D, Dorn HC, Balch AL (2001) Isolation and structural characterization of the endohedral fullerene Sc3N@C78. Angew Chem Int Ed 40(7):1223–1225

    Article  CAS  Google Scholar 

  61. Popov AA, Krause M, Yang SF, Wong J, Dunsch L (2007) C78 cage isomerism defined by trimetallic nitride cluster size: a computational and vibrational spectroscopic study. J Phys Chem B 111(13):3363–3369

    Article  CAS  Google Scholar 

  62. Beavers CM, Chaur MN, Olmstead MM, Echegoyen L, Balch AL (2009) Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C 2(22010)-C78 departs from the isolated pentagon rule. J Am Chem Soc 131(32):11519–11524

    Article  CAS  Google Scholar 

  63. Zhang J, Bearden DW, Fuhrer T, Xu L, Fu W, Zuo T, Dorn HC (2013) Enhanced dipole moments in trimetallic nitride template endohedral metallofullerenes with the pentalene motif. J Am Chem Soc 135(9):3351–3354

    Article  CAS  Google Scholar 

  64. Ma Y, Wang T, Wu J, Feng Y, Xu W, Jiang L, Zheng J, Shu C, Wang C (2011) Size effect of endohedral cluster on fullerene cage: preparation and structural studies of Y3N@C78-C 2. Nanoscale 3(12):4955–4957

    Article  CAS  Google Scholar 

  65. Mulet-Gas M, Rodríguez-Fortea A, Echegoyen L, Poblet JM (2013) Relevance of thermal effects in the formation of endohedral metallofullerenes: the case of Gd3N@C s (39663)-C82 and other related systems. Inorg Chem 52(4):1954–1959

    Article  CAS  Google Scholar 

  66. Yumura T, Sato Y, Suenaga K, Iijima S (2005) Which do endohedral Ti2C80 metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? A theoretical study. J Phys Chem B 109(43):20251–20255

    Article  CAS  Google Scholar 

  67. Tan K, Lu X (2005) Ti2C80 is more likely a titanium carbide endohedral metallofullerene (Ti2C2)@C78. Chem Commun 35:4444–4446

    Article  Google Scholar 

  68. Hino S, Kato M, Yoshimura D, Moribe H, Umemoto H, Ito Y, Sugai T, Shinohara H, Otani M, Yoshimoto Y, Okada S (2007) Effect of encapsulated atoms on the electronic structure of the fullerene cage: a case study on La2@C78 and Ti2C2@C78 via ultraviolet photoelectron spectroscopy. Phys Rev B 75(12):125418

    Article  Google Scholar 

  69. Sato Y, Yumura T, Suenaga K, Moribe H, Nishide D, Ishida M, Shinohara H, Iijima S (2006) Direct imaging of intracage structure in titanium-carbide endohedral metallofullerene. Phys Rev B 73(19):193401

    Article  Google Scholar 

Download references

Acknowledgments

The Center for Information Services and High Performance Computing of Technical University of Dresden are acknowledged for computing time. Financial support by DFG (projects PO 1602/1-2 and DU225/31-1 within the D-A-CH program) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Popov.

Additional information

Published as part of the special collection of articles derived from the XI Girona Seminar and focused on Carbon, Metal, and Carbon–Metal Clusters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Junghans, K. & Popov, A.A. Carbide clusterfullerenes with odd number of carbon atoms: molecular and electronic structures of Sc4C@C80, Sc4C@C82, and Sc4C3@C80 . Theor Chem Acc 134, 10 (2015). https://doi.org/10.1007/s00214-014-1610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1610-6

Keywords

Navigation