Skip to main content
Log in

Study on structural growth behavior and simulated photoelectron spectroscopy of Sc2Sin(0,−1) (n ≤ 8) clusters using G4(MP2) theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The lowest energy structures and of Sc2Sin (n ≤ 8) and their anions were probed with the high level of G4(MP2) methods. The most stable structures of Sc2Sin(0,−1) clusters were predicted to belong to the substitutional types in this work. The simulated PES of the negatively charged ions, especially for Sc2Si5, had good correspondence with the experimental spectrogram. The little differences between the calculated and experimental AEAs and VDEs may indicate that the most stable structures for Sc2Sin clusters reported were reliable. Analysis of dissociation energies revealed that the species of Sc2Sin possessed higher stability than ScSin clusters. The Sc atoms acted as electron donors for neutral and anionic Sc2Sin (n = 1–5); however, silicon clusters act as electron donors for anionic Sc2Si6 and Sc2Si7. The investigation of charge transfer has shown that the dipole moments were all been weakened when the neutral Sc2Sin clusters received an additional electron with the exception of Sc2Si3 and Sc2Si8. The dipole moments were 0 D for neutral Sc2Si3, Sc2Si8 and anionic Sc2Si4, which in turn caused the nonpolar result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) Electronic and geometric stabilities of clusters with transition metal encapsulated by silicon. J Phys Chem A 111:42–49

    Article  CAS  Google Scholar 

  2. Raghavachari K, Rohifing CM (1991) Electronic structures of the negative ions Si2–Si10-: electron affinities of small silicon clusters. J Chem Phys 94:3670–3678

    Article  CAS  Google Scholar 

  3. Raghavachari K (1986) Theoretical study of small silicon clusters: Equilibrium geometries and electronic structures of Sin (n=2–7,10). J Chem Phys 84:5672–5686

    Article  CAS  Google Scholar 

  4. Raghavachari K, Rohifing CM (1988) Bonding and stabilities of small silicon clusters: a theoretical study of Si7-Si10. J Chem Phys 89:2219–2234

    Article  CAS  Google Scholar 

  5. Honea EC, Ogura A, Peale DR, Félix C, Murray CA, Raghavachari K, Sprenger WO, Jarrold MF, Brown WL (1999) Structures and coalescence behavior of size-selected silicon nanoclusters studied by surface-plasmon-polariton enhanced Raman spectroscopy. J Chem Phys 110:12161–12172

    Article  CAS  Google Scholar 

  6. Yang JC, Xu WG, Xiao WS (2005) The small silicon clusters Sin(n=2–10) and their anions: structures, themochemistry and electron affinities. J Mol Struct (Theochem) 719:89–102

    Article  CAS  Google Scholar 

  7. Hao DS, Liu JR, Wu WG, Yang JC (2009) Study on structures and electron affinities of small potassium-silicon clusters SinK(n=2–8) and their anions with Gaussian-3 theory. Theor Chem Acc 124:431–437

    Article  CAS  Google Scholar 

  8. Hiura H, Miyazaki T, Kanayama T (2001) Formation of metal-encapsulating Si cage clusters. Phys Rev Lett 86:1733–1736

    Article  CAS  Google Scholar 

  9. Khanna SN, Rao BK, Jena P, Nayak SK (2003) Stability and magnetic properties of iron atoms encapsulated in Si clusters. Chem Phys Lett 373:433–438

    Article  CAS  Google Scholar 

  10. Lau JT, Hirsch K, Klar Ph, Langenberg A, Lofink F, Richter R, Rittmann J, Vogel M, Zamudio-Bayer V, Möller T, Issendorff BV (2009) X-ray spectroscopy reveals high symmetry and electronic shell structure of transition-metal-doped silicon clusters. Phys Rev A 79(5):053201

    Article  Google Scholar 

  11. Xu HG, Zhang ZG, Feng Y, Yuan J, Zhao Y, Zheng W (2010) Vanadium-doped small silicon clusters: photoelectron spectroscopy and density-functional calculations. Chem Phys Lett 487:204–208

    Article  CAS  Google Scholar 

  12. Beck SM (1987) Studies of silicon clusters-metal atom compound formation in a supersonic molecular beam. J Chem Phys 87:4233–4234

    Article  CAS  Google Scholar 

  13. Beck SM (1989) Mixed metal-silicon clusters formed by chemical reaction in a supersonic molecular beam: implications for reactions at the metal/silicon interface. J Chem Phys 90:6306–6312

    Article  CAS  Google Scholar 

  14. Lu J, Yang J, Xing Z, Ning H (2014) Study on structures and electronic properties of neutral and anionic TiSin(0,−1)(n=1–8) clusters using G4 theory. J Theor Comput Chem 13(5):1450038

    Article  Google Scholar 

  15. Kong X, Xu HG, Zheng W (2012) Structures and magnetic properties of CrSin-(n=3–12) clusters: photoelectron spectroscopy and density functional calculations. J Chem Phys 137(6):064307

    Article  Google Scholar 

  16. Zheng W, Nilles JM, Radisic D, Bowen KH Jr (2005) Photoelectron spectroscopy of chromium-doped silicon cluster anions. J Chem Phys 122(7):071101

    Article  Google Scholar 

  17. Wang J, Zhao J, Ma L, Wang B, Wang G (2007) Structure and magnetic properties of cobalt doped Sin(n=2-14) clusters. Phys Lett A 367:335–344

    Article  CAS  Google Scholar 

  18. Ma L, Zhao J, Wang J, Wang B, Lu Q, Wang G (2006) Growth behavior and magnetic properties of SinFe(n=2–14) clusters. Phys Rev B 73(12):125439

    Article  Google Scholar 

  19. Wu ZJ, Su ZM (2006) Electronic structures and chemical bonding in transition metal monosilicides MSi(M=3d, 4d, 5d elements). J Chem Phys 124(18):184306

    Article  CAS  Google Scholar 

  20. Torres MB, Balbás LC (2007) Relative stability of Sin and SinSc- clusters in the range n =14-18. Eur Phys J D 43:217–220

    Article  CAS  Google Scholar 

  21. Nguyen MT, Tran QT, Tran VT (2017) A CASSCF/CASPT2 investigation on electron detachments from ScSin(n=4–6) clusters. J Mol Model 23(10):282

    Article  Google Scholar 

  22. Lu J, Yang JC, Kang YL, Ning HM (2014) Probing the electronic structures and properties of neutral and anionic ScSin(0,−1)(n=1–6) clusters using ccCA-TM and G4 theory. J Mol Model 20(2):2114

    Article  Google Scholar 

  23. Liu Y, Yang J, Cheng L (2018) Structural stability and evolution of scandium-doped silicon clusters: evolution of linked to encapsulated structures and its influence on the prediction of electron affinities for ScSin(n=4–16) clusters. Inorg Chem 57(20):12934–12940

    Article  CAS  Google Scholar 

  24. He J, Wu K, Liu C, Sa R (2009) Stabilities of 3d transition-metal doped Si14 clusters. Chem Phys Lett 483:30–34

    Article  CAS  Google Scholar 

  25. Wang J, Ma QM, Xu RP, Liu Y, Li YC (2009) 3d transition metals: Which is the ideal guest for Sin(n=15, 16) cages? Phys Lett A 373:2869–2875

    Article  CAS  Google Scholar 

  26. Reveles JU, Khanna SN (2006) Electronic counting rules for the stability of metal-silicon clusters. Phys Rev B 74(3):035435. https://doi.org/10.1103/PhysRevB.74.035435

    Article  CAS  Google Scholar 

  27. Xu HG, Wu MM, Zhang ZG, Sun Q, Zheng WJ (2011) Structural and bonding properties of ScSin-(n=2–6) clusters: photoelectron spectroscopy and density functional calculations. Chin Phys B 20:043102/1-043102/8

    CAS  Google Scholar 

  28. Xu HG, Zhang ZG, Feng Y, Zheng W (2010) Photoelectron spectroscopy and density-functional study of Sc2Sin-(n=2–6) clusters. Chem Phys Lett 498(s 1–3):22–26

    Article  CAS  Google Scholar 

  29. Robles R, Khanna SN, Castleman AW Jr (2008) Stability and magnetic properties of T2Sin (T=Cr, Mn,1≤n≤8) clusters. Phys Rev B 77(23). https://doi.org/10.1103/PhysRevB.77.235441

  30. Bista D, Reber AC, Chauhan V, Khanna SN (2018) Electronic and magnetic properties of Fe2Sin(1≤n≤2)+/0/- clusters. Chem Phys Lett 706:113–119

    Article  CAS  Google Scholar 

  31. Robles R, Khanna SN (2009) Stable T2Sin(T=Fe Co, Ni,1≤n≤8) cluster motifs. J Chem Phys 130(16):164313

    Article  CAS  Google Scholar 

  32. Pham HT, Phan TT, Tam NM, Duong LV, Pham-Ho MP, Nguyen MT (2015) Mn2@Si15: the smallest triple ring tubular silicon cluster. Phys Chem Chem Phys 17:17566–17570

    Article  CAS  Google Scholar 

  33. Pham HT, Majumdar D, Leszczynski J, Nguyen MT (2017) The 4d and 5d bimetal doped tubular silicon clusters Si12M2 with M=Nb, Ta, Mo and W: A bimetallic configuration model. Phys Chem Chem Phys 19:3115–3124

    Article  CAS  Google Scholar 

  34. Han JG, Zhao RN, Duan Y (2007) Geometries, stabilities, and growth patterns of the bimetal Mo2-doped Sin(n=9–16) clusters: a density functional investigation. J Phys Chem A 111:2148–2155

    Article  CAS  Google Scholar 

  35. Ye T, Hui M, Zhang Y, Wang Z, Li G (2018) Probing the geometries and electronic properties of iridium-doped silicon Ir2Sin (n=1–18) clusters. Eur Phys J Plus 133:225

    Article  Google Scholar 

  36. Mayhall NJ, Raghavachari K, Redfern PC, Curtiss LA (2009) Investigation of Gaussian4 theory for transition metal thermochemistry. J Phys Chem A 113:5170–5175

    Article  CAS  Google Scholar 

  37. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127(12):124105

    Article  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB,Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE,Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, PMW G, Johnson BG,Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision C.01,Gaussian, Inc., Wallingford CT

  39. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126(8):084108

    Article  Google Scholar 

  40. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  41. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Ni S, Ellison GB (2002) Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem Rev 102:231–282

    Article  CAS  Google Scholar 

  42. Huber KP, Herzberg G (1979) Molecular spectra molecular structure, constants of diatomic molecules, vol IV. Van Nostr Reinhold, New York, pp 8–689

    Book  Google Scholar 

  43. Stull DR, Prophet H, (1971) JANAF Thermochemical Tables, NSRDS Natl. St. Ref. Data Serv. Natl. Bur. St. No 37 (U.S. GPO, Washington, DC)

  44. Hoops AA, Bise RT, Choi H, Neumark DM (2001) Photodissociation spectroscopy and dynamics of Si4. Chem Phys Lett 346:89–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Grant (2016MS0213 and 2020MS03079) from the Inner Mongolia Natural Science Foundation, by Inner Mongolia University of Science and Technology Innovation Fund (2019QDL-B46).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Lu or Qinghua Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Lu, Q. & Li, X. Study on structural growth behavior and simulated photoelectron spectroscopy of Sc2Sin(0,−1) (n ≤ 8) clusters using G4(MP2) theory. Theor Chem Acc 139, 172 (2020). https://doi.org/10.1007/s00214-020-02679-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02679-9

Keywords

Navigation