Skip to main content
Log in

Microwave and infrared spectra of CO–(pH2)2, CO–(oD2)2, and mixed CO–pH2–He trimers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The microwave and infrared spectra of CO–(pH2)2, CO–(oD2)2, and CO–pH2–He trimers are predicted by performing exact bound state calculations on the global potential energy surfaces defined as the sum of accurately known two-body pH2–CO or oD2–CO (in Li et al. J Chem Phys 139:164315, 2013), pH2–pH2 or oD2–oD2 (in Patkowski et al. J Chem Phys 129:094304, 2008), and pH2–He pair potentials. A total of four transitions have been reported to date, three in the infrared region, and one in the microwave region, which are in good agreement with our theoretical predictions. Based on selection rules, new transitions for J ≤ 3 have been predicted, and the corresponding transition intensities at different temperatures are also calculated. These predictions will serve as a guide for new experiments. The weak and tentatively assigned transitions are verified by our calculations. Three-body effects and the quality of the potential are discussed. A reduced-dimension treatment of the pH2 or oD2 rotation has been employed by applying the hindered-rotor averaging technique of Li et al. (J Chem Phys 133:104305, 2010). A technique for displaying the three-dimensional pH2 or oD2 density in the body-fixed frame is used and shows that in the ground state, the two pH2 or two oD2 molecules are localized, while the He’s are delocalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grebenev S, Toennies JP, Vilesov AF (1998) Science 279:2083

    Article  CAS  Google Scholar 

  2. Nauta K, Miller RE (2001) J Chem Phys 115:10254

    Article  CAS  Google Scholar 

  3. Tang J, Xu Y, McKellar ARW, Jäger W (2002) Science 297:2030

    Article  CAS  Google Scholar 

  4. Lehnig R, Jäger W (2006) Chem Phys Lett 424:146

    Article  CAS  Google Scholar 

  5. Tang J, McKellar ARW (2003) J Chem Phys 119:754

    Article  CAS  Google Scholar 

  6. Surin LA, Potapov AV, Dumesh BS, Schlemmer S, Xu Y, Raston PL, Jäger W (2008) Phys Rev Lett 101:233401

    Article  CAS  Google Scholar 

  7. Tang J, McKellar ARW (2004) J Chem Phys 121:181

    Article  CAS  Google Scholar 

  8. Tang J, McKellar ARW, Mezzacapo F, Moroni S (2004) Phys Rev Lett 92:145503

    Article  CAS  Google Scholar 

  9. McKellar ARW (2008) J Chem Phys 128:044308

    Article  CAS  Google Scholar 

  10. Xu Y, Jäger W (2003) J Chem Phys 119:5457

    Article  CAS  Google Scholar 

  11. McKellar ARW, Xu Y, Jäger W (2006) Phys Rev Lett 97:183401

    Article  CAS  Google Scholar 

  12. Tang J, McKellar ARW (2003) J Chem Phys 119:5467

    Article  CAS  Google Scholar 

  13. McKellar ARW, Xu Y, Jäger W (2007) J Phys Chem A 111:7329

    Article  CAS  Google Scholar 

  14. Li H, Ma YT (2012) J Chem Phys 137:234310

    Article  Google Scholar 

  15. Wang L, Xie DQ, Le Roy RJ, Roy P-N (2012) J Chem Phys 137:104311

    Article  Google Scholar 

  16. McKellar ARW (2007) J Chem Phys 127:044315

    Article  CAS  Google Scholar 

  17. Knaap CJ, Xu Y, Jäger W (2011) Mol Spectrosc 268:130

    Article  Google Scholar 

  18. Xu Y, Blinov N, Jäger W, Roy P-N (2006) J Chem Phys 124:081101

    Article  Google Scholar 

  19. Toennies JP (2013) Mol Phys 111:1879

    Article  CAS  Google Scholar 

  20. Zeng T, Roy P-N (2014) Rep Prog Phys 77:046601

    Article  Google Scholar 

  21. Grebenev S, Sartakov B, Toennies JP, Vilesov AF (2000) Science 289:1532

    Article  CAS  Google Scholar 

  22. Moroni S, Botti M, De Palo S, McKellar ARW (2005) J Chem Phys 122:094314

    Article  CAS  Google Scholar 

  23. Tang J, McKellar ARW (2004) J Chem Phys 121:3087

    Article  CAS  Google Scholar 

  24. Tang J, McKellar ARW (2005) J Chem Phys 123:114314

    Article  Google Scholar 

  25. Michaud J, Xu Y, Jäger W (2008) J Chem Phys 129:144311

    Article  Google Scholar 

  26. Li H, Le Roy RJ, Roy P-N, McKellar ARW (2010) Phys Rev Lett 105:133401

    Article  Google Scholar 

  27. Li H, McKellar ARW, Le Roy RJ, Roy P-N (2011) J Phys Chem A 115:7327

    Article  CAS  Google Scholar 

  28. Li H, Roy P-N, Le Roy RJ (2010) J Chem Phys 132:214309

    Article  Google Scholar 

  29. Zeng T, Guillon G, Cantin JT, Roy P-N (2013) J Phys Chem Lett 4:239

    Article  CAS  Google Scholar 

  30. Wang L, Xie DQ, Le Roy RJ, Roy P-N (2013) J Chem Phys 139:034312

    Article  Google Scholar 

  31. Raston PL, Jager W, Li H, Le Roy RJ, Roy P-N (2012) Phys Rev Lett 108:253402

    Article  CAS  Google Scholar 

  32. Jankowski P, McKellar ARW, Szalewicz K (2012) Science 336:1147

    Article  CAS  Google Scholar 

  33. Jankowski P, Surin LA, Potapov A, Schlemmer S, McKellar ARW, Szalewicz K (2013) J Chem Phys 138:084307

    Article  Google Scholar 

  34. Li H, Zhang XL, Le Roy RJ, Roy P-N (2013) J Chem Phys 139:164315

    Article  Google Scholar 

  35. McKellar ARW (1998) J Chem Phys 108:1811

    Article  CAS  Google Scholar 

  36. McKellar ARW, Xu Y, Jäger W, Bissonnette C (1999) J Chem Phys 110,10766

  37. Surin LA, Roth DA, Pak I, Dumesh BS, Lewen F, Winnewisser G (2000) J Chem Phys 112:4064

    Article  CAS  Google Scholar 

  38. Wang XG, Carrington T Jr, McKellar ARW (2009) J Phys Chem A 113:13331

    Article  CAS  Google Scholar 

  39. Wang XG, Carrington T Jr, Tang J, McKellar ARW (2005) J Chem Phys 123:34301

    Article  Google Scholar 

  40. Wang XG, Carrington T Jr (2010) Can J Phys 88:779

    Article  Google Scholar 

  41. Tang J, McKellar ARW, Wang XG, Carrington T Jr (2009) Can J Phys 87:417

    Article  CAS  Google Scholar 

  42. Li H, Liu YD, Jäger W, Le Roy RJ, Roy P-N (2010) Can J Phys 88:1146

    Article  CAS  Google Scholar 

  43. Li H, Roy P-N, Le Roy RJ (2010) J Chem Phys 133:104305

    Article  Google Scholar 

  44. Telle H, Telle U (1981) J Mol Spectrosc 85:248

    Article  CAS  Google Scholar 

  45. Patkowski K, Cencek W, Jankowski P, Szalewicz K, Mehl JB, Garberoglio G, Harvey AH (2008) J Chem Phys 129:094304

    Article  Google Scholar 

  46. Chuaqui CE, Le Roy RJ, McKellar ARW (1994) J Chem Phys 101:39

    Article  CAS  Google Scholar 

  47. Jeziorska M, Cencek W, Patkowski K, Jeziorski B, Szalewicz K (2007) J Chem Phys 127:124303

    Article  Google Scholar 

  48. Bramley MJ, Tromp JW, Carrington T Jr, Corey GC (1994) J Chem Phys 100:6175

    Article  CAS  Google Scholar 

  49. Mladeovic M (2000) J Chem Phys 112:1070

    Article  Google Scholar 

  50. Gatti F, Lung C, Menou M, Justum Y, Nauts A, Chapuisat X (1998) J Chem Phys 108:8804

    Article  CAS  Google Scholar 

  51. Yu HG (2002) Chem Phys Lett 365:189

    Article  CAS  Google Scholar 

  52. Light JC, Hamilton IP, Lill JV (1985) J Chem Phys 82:1400

    Article  CAS  Google Scholar 

  53. Chen R, Guo H (2001) J Chem Phys 114:1467

    Article  CAS  Google Scholar 

  54. Wang XG, Carrington T Jr (2001) J Chem Phys 114:1473

    Article  CAS  Google Scholar 

  55. Bishop DM, Cheung LM (1980) J Chem Phys 72:5125

    Article  CAS  Google Scholar 

  56. Parker GA, Snow RL, Pack RT (1976) J Chem Phys 64:1668

    Article  CAS  Google Scholar 

  57. Peterson KA, McBane GC (2005) J Chem Phys 123:084314

    Article  Google Scholar 

  58. McKellar ARW (1991) Chem Phys Lett 186:58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Piotr Jankowski (Nicolaus Copernicus University) for providing us with his V12 potential for the H2–CO complex. This research has been supported by the National Natural Science Foundation of China (Grant Nos. 21003058 and 21273094), the Program for New Century Excellent Talents in University, and the Natural Sciences and Engineering Research Council of Canada (NSERC). We acknowledge the High Performance Computing Center (HPCC) of Jilin University for supercomputer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XL., Li, H., Le Roy, R.J. et al. Microwave and infrared spectra of CO–(pH2)2, CO–(oD2)2, and mixed CO–pH2–He trimers. Theor Chem Acc 133, 1568 (2014). https://doi.org/10.1007/s00214-014-1568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1568-4

Keywords

Navigation