Theoretical Chemistry Accounts

, 133:1568 | Cite as

Microwave and infrared spectra of CO–(pH2)2, CO–(oD2)2, and mixed CO–pH2–He trimers

  • Xiao-Long Zhang
  • Hui Li
  • Robert J. Le Roy
  • Pierre-Nicholas Roy
Regular Article
Part of the following topical collections:
  1. Yan Festschrift Collection

Abstract

The microwave and infrared spectra of CO–(pH2)2, CO–(oD2)2, and CO–pH2–He trimers are predicted by performing exact bound state calculations on the global potential energy surfaces defined as the sum of accurately known two-body pH2–CO or oD2–CO (in Li et al. J Chem Phys 139:164315, 2013), pH2–pH2 or oD2–oD2 (in Patkowski et al. J Chem Phys 129:094304, 2008), and pH2–He pair potentials. A total of four transitions have been reported to date, three in the infrared region, and one in the microwave region, which are in good agreement with our theoretical predictions. Based on selection rules, new transitions for J ≤ 3 have been predicted, and the corresponding transition intensities at different temperatures are also calculated. These predictions will serve as a guide for new experiments. The weak and tentatively assigned transitions are verified by our calculations. Three-body effects and the quality of the potential are discussed. A reduced-dimension treatment of the pH2 or oD2 rotation has been employed by applying the hindered-rotor averaging technique of Li et al. (J Chem Phys 133:104305, 2010). A technique for displaying the three-dimensional pH2 or oD2 density in the body-fixed frame is used and shows that in the ground state, the two pH2 or two oD2 molecules are localized, while the He’s are delocalized.

Keywords

Microwave spectra Infrared spectra CO–(pH2)2 trimers CO–(oD2)2 trimers CO–pH2–He trimers Reduced-dimension treatment Exact bound state calculations Three-body effects 

Supplementary material

214_2014_1568_MOESM1_ESM.pdf (30 kb)
Supplementary material 1 (PDF 29 kb)

References

  1. 1.
    Grebenev S, Toennies JP, Vilesov AF (1998) Science 279:2083CrossRefGoogle Scholar
  2. 2.
    Nauta K, Miller RE (2001) J Chem Phys 115:10254CrossRefGoogle Scholar
  3. 3.
    Tang J, Xu Y, McKellar ARW, Jäger W (2002) Science 297:2030CrossRefGoogle Scholar
  4. 4.
    Lehnig R, Jäger W (2006) Chem Phys Lett 424:146CrossRefGoogle Scholar
  5. 5.
    Tang J, McKellar ARW (2003) J Chem Phys 119:754CrossRefGoogle Scholar
  6. 6.
    Surin LA, Potapov AV, Dumesh BS, Schlemmer S, Xu Y, Raston PL, Jäger W (2008) Phys Rev Lett 101:233401CrossRefGoogle Scholar
  7. 7.
    Tang J, McKellar ARW (2004) J Chem Phys 121:181CrossRefGoogle Scholar
  8. 8.
    Tang J, McKellar ARW, Mezzacapo F, Moroni S (2004) Phys Rev Lett 92:145503CrossRefGoogle Scholar
  9. 9.
    McKellar ARW (2008) J Chem Phys 128:044308CrossRefGoogle Scholar
  10. 10.
    Xu Y, Jäger W (2003) J Chem Phys 119:5457CrossRefGoogle Scholar
  11. 11.
    McKellar ARW, Xu Y, Jäger W (2006) Phys Rev Lett 97:183401CrossRefGoogle Scholar
  12. 12.
    Tang J, McKellar ARW (2003) J Chem Phys 119:5467CrossRefGoogle Scholar
  13. 13.
    McKellar ARW, Xu Y, Jäger W (2007) J Phys Chem A 111:7329CrossRefGoogle Scholar
  14. 14.
    Li H, Ma YT (2012) J Chem Phys 137:234310CrossRefGoogle Scholar
  15. 15.
    Wang L, Xie DQ, Le Roy RJ, Roy P-N (2012) J Chem Phys 137:104311CrossRefGoogle Scholar
  16. 16.
    McKellar ARW (2007) J Chem Phys 127:044315CrossRefGoogle Scholar
  17. 17.
    Knaap CJ, Xu Y, Jäger W (2011) Mol Spectrosc 268:130CrossRefGoogle Scholar
  18. 18.
    Xu Y, Blinov N, Jäger W, Roy P-N (2006) J Chem Phys 124:081101CrossRefGoogle Scholar
  19. 19.
    Toennies JP (2013) Mol Phys 111:1879CrossRefGoogle Scholar
  20. 20.
    Zeng T, Roy P-N (2014) Rep Prog Phys 77:046601CrossRefGoogle Scholar
  21. 21.
    Grebenev S, Sartakov B, Toennies JP, Vilesov AF (2000) Science 289:1532CrossRefGoogle Scholar
  22. 22.
    Moroni S, Botti M, De Palo S, McKellar ARW (2005) J Chem Phys 122:094314CrossRefGoogle Scholar
  23. 23.
    Tang J, McKellar ARW (2004) J Chem Phys 121:3087CrossRefGoogle Scholar
  24. 24.
    Tang J, McKellar ARW (2005) J Chem Phys 123:114314CrossRefGoogle Scholar
  25. 25.
    Michaud J, Xu Y, Jäger W (2008) J Chem Phys 129:144311CrossRefGoogle Scholar
  26. 26.
    Li H, Le Roy RJ, Roy P-N, McKellar ARW (2010) Phys Rev Lett 105:133401CrossRefGoogle Scholar
  27. 27.
    Li H, McKellar ARW, Le Roy RJ, Roy P-N (2011) J Phys Chem A 115:7327CrossRefGoogle Scholar
  28. 28.
    Li H, Roy P-N, Le Roy RJ (2010) J Chem Phys 132:214309CrossRefGoogle Scholar
  29. 29.
    Zeng T, Guillon G, Cantin JT, Roy P-N (2013) J Phys Chem Lett 4:239CrossRefGoogle Scholar
  30. 30.
    Wang L, Xie DQ, Le Roy RJ, Roy P-N (2013) J Chem Phys 139:034312CrossRefGoogle Scholar
  31. 31.
    Raston PL, Jager W, Li H, Le Roy RJ, Roy P-N (2012) Phys Rev Lett 108:253402CrossRefGoogle Scholar
  32. 32.
    Jankowski P, McKellar ARW, Szalewicz K (2012) Science 336:1147CrossRefGoogle Scholar
  33. 33.
    Jankowski P, Surin LA, Potapov A, Schlemmer S, McKellar ARW, Szalewicz K (2013) J Chem Phys 138:084307CrossRefGoogle Scholar
  34. 34.
    Li H, Zhang XL, Le Roy RJ, Roy P-N (2013) J Chem Phys 139:164315CrossRefGoogle Scholar
  35. 35.
    McKellar ARW (1998) J Chem Phys 108:1811CrossRefGoogle Scholar
  36. 36.
    McKellar ARW, Xu Y, Jäger W, Bissonnette C (1999) J Chem Phys 110,10766Google Scholar
  37. 37.
    Surin LA, Roth DA, Pak I, Dumesh BS, Lewen F, Winnewisser G (2000) J Chem Phys 112:4064CrossRefGoogle Scholar
  38. 38.
    Wang XG, Carrington T Jr, McKellar ARW (2009) J Phys Chem A 113:13331CrossRefGoogle Scholar
  39. 39.
    Wang XG, Carrington T Jr, Tang J, McKellar ARW (2005) J Chem Phys 123:34301CrossRefGoogle Scholar
  40. 40.
    Wang XG, Carrington T Jr (2010) Can J Phys 88:779CrossRefGoogle Scholar
  41. 41.
    Tang J, McKellar ARW, Wang XG, Carrington T Jr (2009) Can J Phys 87:417CrossRefGoogle Scholar
  42. 42.
    Li H, Liu YD, Jäger W, Le Roy RJ, Roy P-N (2010) Can J Phys 88:1146CrossRefGoogle Scholar
  43. 43.
    Li H, Roy P-N, Le Roy RJ (2010) J Chem Phys 133:104305CrossRefGoogle Scholar
  44. 44.
    Telle H, Telle U (1981) J Mol Spectrosc 85:248CrossRefGoogle Scholar
  45. 45.
    Patkowski K, Cencek W, Jankowski P, Szalewicz K, Mehl JB, Garberoglio G, Harvey AH (2008) J Chem Phys 129:094304CrossRefGoogle Scholar
  46. 46.
    Chuaqui CE, Le Roy RJ, McKellar ARW (1994) J Chem Phys 101:39CrossRefGoogle Scholar
  47. 47.
    Jeziorska M, Cencek W, Patkowski K, Jeziorski B, Szalewicz K (2007) J Chem Phys 127:124303CrossRefGoogle Scholar
  48. 48.
    Bramley MJ, Tromp JW, Carrington T Jr, Corey GC (1994) J Chem Phys 100:6175CrossRefGoogle Scholar
  49. 49.
    Mladeovic M (2000) J Chem Phys 112:1070CrossRefGoogle Scholar
  50. 50.
    Gatti F, Lung C, Menou M, Justum Y, Nauts A, Chapuisat X (1998) J Chem Phys 108:8804CrossRefGoogle Scholar
  51. 51.
    Yu HG (2002) Chem Phys Lett 365:189CrossRefGoogle Scholar
  52. 52.
    Light JC, Hamilton IP, Lill JV (1985) J Chem Phys 82:1400CrossRefGoogle Scholar
  53. 53.
    Chen R, Guo H (2001) J Chem Phys 114:1467CrossRefGoogle Scholar
  54. 54.
    Wang XG, Carrington T Jr (2001) J Chem Phys 114:1473CrossRefGoogle Scholar
  55. 55.
    Bishop DM, Cheung LM (1980) J Chem Phys 72:5125CrossRefGoogle Scholar
  56. 56.
    Parker GA, Snow RL, Pack RT (1976) J Chem Phys 64:1668CrossRefGoogle Scholar
  57. 57.
    Peterson KA, McBane GC (2005) J Chem Phys 123:084314CrossRefGoogle Scholar
  58. 58.
    McKellar ARW (1991) Chem Phys Lett 186:58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiao-Long Zhang
    • 1
  • Hui Li
    • 1
    • 2
  • Robert J. Le Roy
    • 2
  • Pierre-Nicholas Roy
    • 2
  1. 1.Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Department of ChemistryUniversity of WaterlooWaterlooCanada

Personalised recommendations