Skip to main content
Log in

State-to-state quantum versus classical dynamics study of the OH + CO → H + CO2 reaction in full dimensions (J = 0): checking the validity of the quasi-classical trajectory method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We report full-dimensional state-to-state quantum mechanical (QM) and quasi-classical trajectory (QCT) calculations on the title reaction for the ground rovibrational initial state with total angular momentum fixed at zero on the accurate potential energy (PES) constructed recently by using permutation-invariant polynomial–neural network method (Li et al. in J Chem Phys 140:044327, 2014), to check the validity of the QCT method for the reaction. It is found that the QM state-to-state results strongly depend on the resonance structures in reaction, but the collision energy-averaged results show a smooth change with the increase of collision energy. Overall, the agreement between collision energy-averaged QM and QCT state-to-state results is satisfactory, in particular at high collision energy region, indicating that the QCT method is rather accurate on describing dynamics of the reaction on the PES. On the other hand, because earlier studies revealed the QCT results on the PES do not agree very well with the experimental measurements available, more theoretical and experimental studies should be carried out to achieve a full understanding on the dynamics of this benchmark complex-forming reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academic press, San Diego

    Google Scholar 

  2. Miller JA, Kee RJ, Westbrook CK (1990) Annu Rev Phys Chem 41:345–387

    Article  CAS  Google Scholar 

  3. Ravishankara AR, Thompson RL (1983) Chem Phys Lett 99:377–381

    Article  CAS  Google Scholar 

  4. Frost MJ, Sharkey P, Smith IWM (1991) Faraday Discuss Chem Soc 91:305–317

    Article  CAS  Google Scholar 

  5. Golden DM, Smith GP, McEwen AB, Yu CL, Eiteneer B, Frenklach M, Vaghjiani GL, Ravishankara AR, Tully FP (1998) J Phys Chem A 102:8598–8606

    Article  CAS  Google Scholar 

  6. Alagia M, Balucani N, Casavecchia P, Stranges D, Volpi GG (1993) J Chem Phys 98:8341

    Article  CAS  Google Scholar 

  7. Casavecchia P, Balucani N, Volpi GG (1995) Chemical dynamics and kinetics of small free radicals, part I. In: Wagner AF, Liu K (eds) World Scientific, Singapore

  8. Schatz GC, Fitzcharles MS, Harding LB (1987) Faraday Discuss Chem Soc 84:359–369

    Article  CAS  Google Scholar 

  9. Kudla K, Schatz GC, Wagner AF (1991) J Chem Phys 95:1635

    Article  CAS  Google Scholar 

  10. Bradley KS, Schatz GC (1997) J Chem Phys 106:8464

    Article  CAS  Google Scholar 

  11. Yu HG, Muckerman JT, Sears TJ (2001) Chem Phys Lett 349:547–554

    Article  CAS  Google Scholar 

  12. Lakin MJ, Troya D, Schatz GC, Harding LB (2003) J Chem Phys 119:5848

    Article  CAS  Google Scholar 

  13. Valero R, van Hemert MC, Kroes GJ (2004) Chem Phys Lett 393:236–244

    Article  CAS  Google Scholar 

  14. Li J, Wang Y, Jiang B, Ma J, Dawes R, Xie D, Bowman JM, Guo H (2012) J Chem Phys 136:041103

    Article  Google Scholar 

  15. Li J, Xie C, Ma J, Wang Y, Dawes R, Xie D, Bowman JM, Guo H (2012) J Phys Chem A 116:5057–5067

    Article  CAS  Google Scholar 

  16. Bowman JM, Czakó G, Fu B (2011) Phys Chem Chem Phys 13:8094

    Article  CAS  Google Scholar 

  17. Behler J (2011) Phys Chem Chem Phys 13:17930

    Article  CAS  Google Scholar 

  18. Chen J, Xu X, Zhang DH (2013) J Chem Phys 138:221104

    Article  Google Scholar 

  19. Jiang B, Guo H (2013) J Chem Phys 139:054112

    Article  Google Scholar 

  20. Li J, Jiang B, Guo H (2013) J Chem Phys 139:204103

    Article  Google Scholar 

  21. Li J, Chen J, Zhang DH, Guo H (2014) J Chem Phys 140:044327

    Article  Google Scholar 

  22. Zhang DH, Zhang JZH (1995) J Chem Phys 103:6512

    Article  CAS  Google Scholar 

  23. Valero R, McCormack DA, Kroes GJ (2004) J Chem Phys 120:4263

    Article  CAS  Google Scholar 

  24. Medvedev DM, Gray SK, Goldfield EM, Lakin MJ, Troya D, Schatz GC (2004) J Chem Phys 120:1231

    Article  CAS  Google Scholar 

  25. Liu S, Xu X, Zhang DH (2012) Theor Chem Acc 131:1068

    Article  Google Scholar 

  26. Ma J, Li J, Guo H (2012) J Phys Chem Lett 3:2482–2486

    Article  CAS  Google Scholar 

  27. Liu S, Xu X, Zhang DH (2011) J Chem Phys 135:141108

    Article  Google Scholar 

  28. Wang C, Liu S, Zhang DH (2012) Chem Phys Lett 537:16–20

    Article  CAS  Google Scholar 

  29. Xiao C, Xu X, Liu S, Wang T, Dong W, Yang T, Sun Z, Dai D, Zhang DH, Yang X (2011) Science 333:440

    Article  CAS  Google Scholar 

  30. Liu S, Xu X, Zhang DH (2012) J Chem Phys 136:144302

    Article  Google Scholar 

  31. García E, Saracibar A, Zuazo L, Laganà A (2007) Chem Phys 332:162–175

    Article  Google Scholar 

  32. García E, Corchado JC, Espinosa-García J (2012) J Comput Theor Chem 990:47–52

    Article  Google Scholar 

  33. Corchado JC, Espinosa-García J, Li J, Guo H (2013) J Phys Chem A 117:11648–11654

    Article  CAS  Google Scholar 

  34. Xie C, Li J, Xie D, Guo H (2012) J Chem Phys 137:024308

    Article  Google Scholar 

  35. Althorpe SC, Kouri DJ, Hoffman DK (1997) J Chem Phys 106:7629–7636

    Article  CAS  Google Scholar 

  36. Cvitaš MT, Althorpe SC (2009) J Phys Chem A 113:4557–4569

    Article  Google Scholar 

  37. Cvitaš MT, Althorpe SC (2011) J Chem Phys 134:024309

    Article  Google Scholar 

  38. Zhang DH, Zhang JZH (1994) J Chem Phys 101:1146

    Article  CAS  Google Scholar 

  39. Zhang DH, Light JC (1996) J Chem Phys 104:4544–4553

    Article  CAS  Google Scholar 

  40. Rose ME (1957) Elementary theory of angular momentum. Wiley, New York

    Google Scholar 

  41. Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu DH, Peslherbe GH, Swamy KN, Linde SRV, Varandas A, Wang H, Wolf RJ (1996) Quantum Chem Prog Exch Bull 16:671

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 90921014), Ministry of Science and Technology of China (2013CB834601), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong H. Zhang.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chen, J., Fu, B. et al. State-to-state quantum versus classical dynamics study of the OH + CO → H + CO2 reaction in full dimensions (J = 0): checking the validity of the quasi-classical trajectory method. Theor Chem Acc 133, 1558 (2014). https://doi.org/10.1007/s00214-014-1558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1558-6

Keywords

Navigation