Skip to main content
Log in

Electrostatic potentials of camptothecin and its analogues

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In order to understand the influences of the modification of E-ring on the main frame of camptothecin (CPT), studies of the E-ring modification resulted changes in the stability and the electrostatic potential around the main frame of CPT were performed by the density functional theory. The results of present study indicate that the stability of the close-ring lactone form of CPT and homocamptothecin (hCPT) is similar to their open-ring hydroxylate forms, especially when in aqueous solutions. As an E-ring-modified CPT analogue, hCPT has essentially the same electrostatic potential (ESP) as CPT around the main frame (from A- to D-ring). However, the electrostatic potentials of the open-ring compounds are more negative around the main frame than that of CPT. The changes in the ESP of the CPT derivatives are found to be correlated with the corresponding dipole moments. Since electrostatic potential could influence the π–π stacking pattern between CPT (and its analogues) and the DNA bases, present study suggests that this π–π interaction of the open-ring forms of CPT and hCPT might be different from that of the close-ring lactone form. The information revealed in this study sheds light on the developments of new CPT-type antitumor drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomas CJ, Rahier NJ, Hecht SM (2004) Bioorg Med Chem 12:1585–1604

    Article  CAS  Google Scholar 

  2. Hartmann JT, Lipp HP (2006) Drug Saf 29:209–230

    Article  CAS  Google Scholar 

  3. Hsiang Y, Hertzberg R, Hecht S, Liu LF (1985) J Biol Chem 260:14873–14878

    CAS  Google Scholar 

  4. Hsiang Y, Lihou MG, Liu LF (1989) Cancer Res 49:5077–5082

    CAS  Google Scholar 

  5. Jaxel C, Kohn KW, Wai MC, Wall Mo E, Pommier Y (1989) Cancer Res 49:1465–1469

    CAS  Google Scholar 

  6. Fan Y, Shi LM, Kohn KW, Pommier Y, Weistein JN (2001) J Med Chem 44:3254–3263

    Article  CAS  Google Scholar 

  7. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart L (2002) Proc Natl Acad Sci USA 99:15387–15392

    Article  CAS  Google Scholar 

  8. Kerrigan JE, Pilch DS (2001) Biochemistry 40:9792–9798

    Article  CAS  Google Scholar 

  9. Fan Y, Weinstein JN, Kohn KW, Shi LM, Pommier Y (1998) J Med Chem 41:2216–2226

    Article  CAS  Google Scholar 

  10. Lesueur-Ginot L, Demarquay D, Kiss R, Kasprzyk PG, Dassonneville L, Bailly C, Camara J, Lavergne O, Bigg DCH (1999) Cancer Res 59:2939–2943

    CAS  Google Scholar 

  11. Chauvier D, Chourpa I, Maizieres M, Riou J-F, Dauchez M, Alix AJP, Manfait M (2003) J Mol Struct 651–653:55–65

    Article  Google Scholar 

  12. Demarquay D, Huchet M, Coulomb H, Lesueur-Ginot L, Lavergne O, Camara J, Kasprzyk PG, Prevost G, Bigg DCH (2004) Cancer Res 64:4942–4949

    Article  CAS  Google Scholar 

  13. Xiao X, Cushman M (2005) J Org Chem 70:9584–9587

    Article  CAS  Google Scholar 

  14. Xiao X, Cushman M (2005) J Am Chem Soc 127:9960–9961

    Article  CAS  Google Scholar 

  15. Beck AD (1993) J Chem Phys 98:5648–5652

    Article  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  18. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  19. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  20. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  21. Frisch MJ et al (2010) Gaussian 09, (version b.01). (Gaussian, Inc., Wallingford CT)

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (30772586) and Jiangsu Natural Science Foundation of China (BK2009071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejun Feng, Jian Jin or Jiande Gu.

Additional information

Dedicated to Professor Guosen Yan and published as part of the special collection of articles celebrating his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Chen, Y., Feng, X. et al. Electrostatic potentials of camptothecin and its analogues. Theor Chem Acc 133, 1542 (2014). https://doi.org/10.1007/s00214-014-1542-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1542-1

Keywords

Navigation