Skip to main content

Advertisement

Log in

Influence of multiple and cooperative hydrogen bonding on the acidity of polyhydroxylated piperidines: electron density topological analysis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen bonds are the presiding concepts for arranging the three-dimensional forms of biological molecules like proteins, carbohydrates, and nucleic acids, and act as guides for proton transfer reactions. Gas-phase acidity and pKa calculations in dimethyl sulfoxide on a line of polyhydroxylated piperidines specify that multiple hydrogen bonds lead to enhance acidities. The gas-phase acidity (GPA) of polyhydroxylated piperidines was investigated by MP2/6-311++G(d,p)//B3LYP/6-311++G(d,p) method. For each structure, varied primary and secondary hydroxyl groups were deprotonated. The natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses have also been used to realize the character of the hydrogen bonding interactions in these compounds. The results show by adding each hydroxyl group, ΔHacid in the gas phase becomes less endothermic and pKa value in the solution phase will decrease. Therefore, intramolecular hydrogen bonds lead to enhance the acid strength. In both the gas and solution phases, the β-nojirimycin-OH2 (β-1-OH2) was found to be the most acidic compound with calculated GPA of 349.4 kcal·mol-1 and the pKa value of 22.0 (8.0 pKa units more acidic than 1-propanol). It was also shown, by applying the polarized continuum model (PCM), there is a superior linear correlation with the GPAs of polyhydroxylated piperidines and their calculated pKa (DMSO) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Afarinkia K, Bahar A (2005) Recent advances in the chemistry of azapyranose sugars. Tetrahedron Asymmetry 16:1239–1287

  2. Zamoner LOB, Aragão-Leoneti V, Carvalho I (2019) Iminosugars: Effects of Stereochemistry. Ring Size, and N-Substituents on Glucosidase Activities, Pharmaceuticals 12:108

    CAS  Google Scholar 

  3. Jensen JL, Tsuang SC, Uslan AH (1986) Mechanism of acid-catalyzed anomerization of methyl D-glucopyranosides. J Org Chem 51:816–819

    Article  CAS  Google Scholar 

  4. Liu PU (1987) Total synthesis of 2,6-dideoxy-2,6-imino-7-O-(.beta.-D-glucopyranosyl)-D-glycero-L-gulo-heptitol hydrochloride. A potent inhibitor of .alpha.-glucosidases. J Org Chem 52:4717–4721

  5. Cogoli A, Semenza G (1975) A probable oxocarbonium ion in the reaction mechanism of small intestinal sucrase and isomaltase. J Biol Chem 250:7802–7809

    Article  CAS  Google Scholar 

  6. Sinnott ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202

    Article  CAS  Google Scholar 

  7. Johnson CR, Golebiowski A, Sundram H, Miller MW, Dwaihy RL (1995) Synthesis of (+)-1-deoxygalactonojirimycin and a related indolizidine. Tetrahedron Lett 36:653–654

    Article  CAS  Google Scholar 

  8. Suzuki K, Hashimoto H (1994) Synthesis of azapyranosyl thioglycoside: Novel pseudo-disaccharide having an azasugar residue at the non-reducing end. Tetrahedron Lett 35:4119–4122

    Article  Google Scholar 

  9. Pandey G, Bharadwaj KC, Khan MI, Shashidhara K, Puranik VG (2008) Synthesis of polyhydroxy piperidines and their analogues: a novel approach towards selective inhibitors of α-glucosidase. Org Biomol Chem 6:2587–2595

    Article  CAS  Google Scholar 

  10. Inouye S, Tsuruoka T, Ito T, Niida T (1968) Structure and synthesis of nojirimycin. Tetrahedron 24:2125–2144

    Article  CAS  Google Scholar 

  11. Inouye S, Tsuruoka T, Nida T (1966) The structure of nojirimycin, a piperidinose sugar antibiotic. J Antibiot 19:288–292

    CAS  PubMed  Google Scholar 

  12. Junge B, Matzke M, Stltefuss J (1996) Handbook of Experimental Pharmacology, Kuhlmann, J

  13. Wang H, Shen Y, Zhao L, Ye Y (2021) 1-Deoxynojirimycin and its derivatives: A mini review of the literature. Curr Med Chem 28:628–643

    CAS  PubMed  Google Scholar 

  14. Pandey G, Kapur M, Khan MI, Gaikwad SM (2003) A new access to polyhydroxy piperidines of the azasugar class: synthesis and glycosidase inhibition studies. Org Biomol Chem 1:3321–3326

    Article  CAS  Google Scholar 

  15. Miyake Y, Ebata M (1988a) Isolation and properties of a new β-galactosidase inhibitor, galactostatin, from Streptomyces lydicus. Agric Biolog Chem 52:153–158

    CAS  Google Scholar 

  16. Miyake Y, Ebata M (1988b) Inhibition of β-galactosidase by galactostatin, galactostatin-lactam, and 1-deoxygalactostatin. Agric Biol Chem 52:1649–1654

    CAS  Google Scholar 

  17. Legler G, Pohl S (1986) Synthesis of 5-amino-5-deoxy-D-galactopyranose and 1, 5-dideoxy-1, 5-imino-D-galactitol, and their inhibition of α-and β-D-galactosidases. Carbohydrate research 155:119–129

    Article  CAS  PubMed  Google Scholar 

  18. Asano N, Ishii S, Kizu H, Ikeda K, Yasuda K, Kato A, Martin OR, Fan JQ (2000) In vitro inhibition and intracellular enhancement of lysosomal α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. Eur J Biochem 267:4179–4186

    Article  CAS  PubMed  Google Scholar 

  19. Legler G, Stütz AE, Immich H (1995) Synthesis of 1, 5-dideoxy-1, 5-imino-D-arabinitol (5-nor-L-fuco-1-deoxynojirimycin) and its application for the affinity purification and characterisation of α-L-fucosidase. Carbohydr Res 272:17–30

    Article  CAS  Google Scholar 

  20. Le Merrer Y, Poitout L, Depezay J-C, Dosbaa I, Geoffroy S, Foglietti M-J (1997) Synthesis of azasugars as potent inhibitors of glycosidases. Bioorg Med Chem 5:519–533

    Article  Google Scholar 

  21. Nazır H, Yıldız M, Yılmaz H, Tahir M, Ülkü D (2000) Intramolecular hydrogen bonding and tautomerism in Schiff bases. Structure of N-(2-pyridil)-2-oxo-1-naphthylidenemethylamine. J Mol Struct 524:241–250.

  22. Čuma M, Scheiner S, Kar T (1998) Competition between rotamerization and proton transfer in o-hydroxybenzaldehyde. J Am Chem Soc 120:10497–10503

    Article  Google Scholar 

  23. Filarowski A, Głowiaka T, Koll A (1999) Strengthening of the intramolecular O⋯ H⋯ N hydrogen bonds in Schiff bases as a result of steric repulsion. J Mol Struct 484:75–89

    Article  CAS  Google Scholar 

  24. Raissi H, Moshfeghi E, Jalbout AF, Saeid Hosseini M, Fazli M (2007) An approach to estimate the energy and strength of the intramolecular hydrogen bond in different conformers of 4‐methylamino‐3‐penten‐2‐one. Int J Quantum Chem 107:1835–1845

  25. Fores M, Scheiner S (1999) Effects of chemical substitution upon excited state proton transfer. Fluoroderivatives of salicylaldimine. Chem Phys 246:65–74

    Article  Google Scholar 

  26. Chen C, Shyu SF, Hsu FS (1999) Theoretical study of salicylaldehyde conformal isomers and their intramolecular oxygen and hydrogen relations. Int J Quantum Chem 74:395–404

    Article  CAS  Google Scholar 

  27. Barone V, Palma A, Sanna N (2003) Toward a reliable computational support to the spectroscopic characterization of excited state intramolecular proton transfer:[2, 2′-bipyridine]-3, 3′-diol as a test case. Chem Phys Lett 381:451–457

    Article  CAS  Google Scholar 

  28. Jalbout AF, Contreras-Torres F, Castillo RD (2008) Solvation of excess electrons trapped in charge pockets on hydrated molecular surfaces. Int J Quantum Chem 108:567–575

    Article  CAS  Google Scholar 

  29. Chung G, Kwon O, Kwon Y (1998) Theoretical study on salicylaldehyde and 2-mercaptobenzaldehyde: intramolecular hydrogen bonding. J Phys Chem A 102:2381–2387

    Article  CAS  Google Scholar 

  30. Linstrom PJ, Mallard WG (2001) The NIST Chemistry WebBook: A chemical data resource on the internet. J Chem Eng Data 46:1059–1063

    Article  CAS  Google Scholar 

  31. Ervin KM, DeTuri VF (2002) Anchoring the gas-phase acidity scale. J Phys Chem A 106:9947–9956

    Article  CAS  Google Scholar 

  32. Ellison G, Engelking P, Lineberger W (1982) Photoelectron spectroscopy of alkoxide and enolate negative ions. J Phys Chem 86:4873–4878

    Article  CAS  Google Scholar 

  33. Pérez P, Toro-Labbé A, Contreras R (2000) Global and local analysis of the gas-phase acidity of haloacetic acids. J Phys Chem A 104:5882–5887

    Article  Google Scholar 

  34. Pérez P, Simon-Manso Y, Aizman A, Fuentealba P, Contreras R (2000) Empirical energy− density relationships for the analysis of substituent effects in chemical reactivity. J Am Chem Soc 122:4756–4762

    Article  Google Scholar 

  35. Dai H, Kong J, Zhou C, Franklin N, Tombler T, Cassell A, Fan S, Chapline M (1999) Controlled chemical routes to nanotube architectures, physics, and devices, ACS Publications

  36. Rablen PR (2000) Is the acetate anion stabilized by resonance or electrostatics? A systematic structural comparison, J Am Chem Soc 122:357–368

    Article  CAS  Google Scholar 

  37. Brauman JI, Blair LK (1970) Gas-phase acidities of alcohols. J Am Chem Soc 92:5986–5992

    Article  CAS  Google Scholar 

  38. Tian Z, Fattahi A, Lis L, Kass SR (2009) Single-centered hydrogen-bonded enhanced acidity (SHEA) acids: a new class of brønsted acids. J Am Chem Soc 131:16984–16988

    Article  CAS  PubMed  Google Scholar 

  39. Hassanpour A, Ebrahimiasl S, Youseftabar-Miri L, Ebadi A, Ahmadi S, Eslami M (2021a) A DFT study on the electronic detection of mercaptopurine drug by boron carbide nanosheets. Comput Theor Chem 1198:113166

  40. Hassanpour A, Youseftabar-Miri L, Nezhad PDK, Ahmadi S, Ebrahimiasl S (2021b) Kinetic stability and NBO analysis of the C20-nAln nanocages (n= 1–5) using DFT investigation. J Mol Struct 1233:130079

  41. Nezhad PDK, Youseftabar-Miri L, Ahmadi S, Ebrahimiasl S, Vessally E (2021) A DFT quest for effects of fused rings on the stability of remote N-heterocyclic carbenes. Struct Chem 32:787–798

    Article  CAS  Google Scholar 

  42. Spartan V (1996) 06V102, Wavefunction, Inc., Irvine, CA, USA

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) GAUSSIAN 09; Revision A02; Gaussian, Inc., Wallingford, CT

  44. Beck AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5646

  45. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  46. Xing D, Tan X, Chen X, Bu Y (2008) Theoretical Study on the Gas-Phase Acidity of Multiple Sites of Cu+− Adenine and Cu2+− Adenine Complexes. J Phys Chem A 112:7418–7425

    Article  CAS  PubMed  Google Scholar 

  47. Ding F, Smith JM, Wang H (2009) First-principles calculation of p K a values for organic acids in nonaqueous solution. J Org Chem 74:2679–2691

    Article  CAS  PubMed  Google Scholar 

  48. Reed AE, Weinhold F (1985) Natural localized molecular orbitals. J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  49. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  50. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  51. Foster AJ, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102: 7211–7218

  52. Chocholoušová J, Špirko V, Hobza P (2004) First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-H⋯ O and improper blue-shifted C–H⋯ O hydrogen bonds. Phys Chem Chem Phys 6:37–41

    Article  Google Scholar 

  53. Bader R (1990) Atoms in Molecules: A Quantum Theory Oxford University Press Oxford, nº UK

  54. Popelier PLA, Aicken F, O’Brien S (2000) Atoms in molecules, Prentice Hall Manchester

  55. Becke A (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. John Wiley & Sons

  56. Koch U, Popelier PL (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  57. Bader RF (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  58. Bader R, Biegler-König F, Schönbohm J (2002) AIM2000 program package, Ver. 2.0, McMaster University, Hamilton

  59. Cramer CJ, Truhlar DG (1993) Quantum chemical conformational analysis of glucose in aqueous solution. J Am Chem Soc 115:5745–5753

    Article  CAS  Google Scholar 

  60. Mulroney B, Barrie Peel J, Traeger JC (1999) Relative gas‐phase acidities of glucopyranose from molecular orbital calculations. J Mass Spectrom 34:544-553

  61. Majumdar TK, Clairet F, Tabet JC, Cooks RG (1992) Epimer distinction and structural effects on gas-phase acidities of alcohols measured using the kinetic method. J Am Chem Soc 114:2897–2903

    Article  CAS  Google Scholar 

  62. Edward J (1955) Stability of glycosides to acid hydrolysis. Chem Ind 3:1102–1104

    Google Scholar 

  63. Albert A, Serjeant E (1984) The Determination of Ionization Constants: A Laboratory Manual. Chapman and Hall, London and New York

    Book  Google Scholar 

  64. Stewart R (2012) The proton: applications to organic chemistry, Elsevier

Download references

Acknowledgments

Support from Tehran Medical Sciences, Islamic Azad University, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Jebeli Javan.

Ethics declarations

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javan, M.J. Influence of multiple and cooperative hydrogen bonding on the acidity of polyhydroxylated piperidines: electron density topological analysis. Struct Chem 33, 101–111 (2022). https://doi.org/10.1007/s11224-021-01821-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01821-y

Keywords

Navigation