Skip to main content

Advertisement

Log in

Locating saddle points of any index on potential energy surfaces by the generalized gentlest ascent dynamics

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The system of ordinary differential equations for the method of the gentlest ascent dynamics (GAD) is tested to determine the saddle points of the potential energy surface of some molecules. The method has been proposed earlier [E and Zhou in Nonlinearity 24:1831 (2011)]. We additionally use the metric of curvilinear internal coordinates. By a number of examples, we explain the possibilities of a GAD curve; it can find the transition state of interest by a gentlest ascent, directly or indirectly, or not. A GAD curve can be a model of a reaction path, if it does not contain a turning point for the energy. We further discuss generalized GAD formulas for the search of saddle points of a higher index. We calculate diverse examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mezey PG (1987) Potential energy hypersurfaces. Elsevier, Amsterdam

    Google Scholar 

  2. Heidrich D, Kliesch W, Quapp W (1991) Properties of chemical interesting potential energy surfaces. Springer Lecture Notes in Chemistry 56, Berlin

    Book  Google Scholar 

  3. Wales DJ (2003) Energy Landsc. Cambridge Univ Press, Cambridge

    Google Scholar 

  4. Heidrich D (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht

  5. Weinan E, Zhou X (2011) Nonlinearity 24:1831

    Article  Google Scholar 

  6. Samanta A, Weinan E (2012) J Chem Phys 136:124104

    Google Scholar 

  7. Li T, Zhang P, Zhang W (2013) Multiscale Model Simul 11:385

    Article  Google Scholar 

  8. Bofill JM, Quapp W, Caballero M (2013) Chem Phys Lett 583:203

    CAS  Google Scholar 

  9. Zeng Y, Xiao P, Henkelman G (2014) J Chem Phys 140:044115

    Google Scholar 

  10. Crippen GM, Scheraga HA (1971) Arch Biochem BioPhys 144:462

    Article  CAS  Google Scholar 

  11. Quapp W (2003) J Theor Comput Chem 2:385

    CAS  Google Scholar 

  12. Hratchian HP, Schlegel HB (2005) Theory and Applications of Computational Chemistry: the first forty years, Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) p195 Elsevier, Amsterdam.

  13. Heidrich D, Quapp W (1986) Theor Chim Acta 70:89

    Article  CAS  Google Scholar 

  14. Khait YG, Panin AI, Averyanov AS (1994) Int J Quant Chem 54:329

    Article  Google Scholar 

  15. Minyaev RM, Getmanskii IV, Quapp W (2004) Russ J Phys Chem 78:1494

    Google Scholar 

  16. Minyaev RM, Quapp W, Schmidt B, Getmanski IV, Koval VV (2013) Chem Phys 425:170

    CAS  Google Scholar 

  17. Maugière FA, Collins P, Ezra GS, Wiggins S (2013) J Chem Phys 138:134118

    Google Scholar 

  18. Nagahata Y, Teramoto H, Li C-B, Kawai Sh, Komatsuzaki T (2013) Phys Rev E Stat Nonlin Soft Matter Phys 88:042923

    Article  Google Scholar 

  19. Quapp W, Bofill JM, Caballero M (2012) Chem Phys Lett 541:122

    CAS  Google Scholar 

  20. Doye JPK, Wales DJ (2008) J Chem Phys 116:3777

    Google Scholar 

  21. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  22. Gordon MS, Schmidt MW (2005) Theory and applications of computational chemistry: the first forty years. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Advances in electronic structure theory: GAMESS a decade later. Elsevier, Amsterdam, p 1167

    Google Scholar 

  23. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99

    CAS  Google Scholar 

  24. Quapp W, Heidrich D (1984) Theor Chim Acta 66:245

    Article  CAS  Google Scholar 

  25. Tachibana A (1981) Theor Chim Acta 58:301

    Article  CAS  Google Scholar 

  26. Parlett BN (1980) The symmetric eigenvalue problem. Prentice-Hall, Englewood Cliffs NJ

    Google Scholar 

  27. Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I nonstiff problems. 2nd Ed. Springer, Series Computat Math 8, see also www-unige.ch/~hairer/software.html

  28. Hedar A-R (2013) Global optimization test problems. Technical report, see also www-optima.amp.i.kyotou.ac.jp/member/student/hedar/Hedar_files/TestGOhtm

  29. Mühlenbein H, Schomisch D, Born J (1991) Parallel Comp 17:619

    Article  Google Scholar 

  30. Ghosh K, Ozkan SB, Dill KA (2007) J Am Chem Soc 129:11920

    Article  CAS  Google Scholar 

  31. See www-doye.ch.cam.ac.uk/networks/LJn.html

  32. Balucani N, Leonori F, Bergeat A, Petrucci R, Casavecchia P (2011) Phys Chem Chem Phys 13:8322

    Article  CAS  Google Scholar 

  33. Knyazev VD (2002) J Phys Chem A 106:8741

    CAS  Google Scholar 

  34. Carter JT, Cook DB (1991) J Mol Struct Theochem 251:111

    Article  Google Scholar 

  35. Kamarchik E, Rodrigo C, Bowman JM, Reisler H, Krylov AI (2012) J Chem Phys 136:084304

    CAS  Google Scholar 

  36. Ryazanov M, Rodrigo C, Reisler H (2012) J Chem Phys 136:084305

    CAS  Google Scholar 

  37. Schmidt B, Quapp W (2012) Theor Chem Acc 132:1305

    Article  Google Scholar 

  38. Bofill JM, Quapp W, Caballero M (2012) J Chem Theor Comput 8:927

    CAS  Google Scholar 

  39. Marcy TP, Diaz RR, Heard D, Leone SR, Harding LB, Klippenstein SJ (2001) J Phys Chem A 105:8361

    CAS  Google Scholar 

  40. Ishida K, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministerio de Ciencia e Innovación, DGI project CTQ2011-22505 and, in part from the Generalitat de Catalunya projects 2009SGR-1472 is fully acknowledged. We thank the referees for suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Appendix: Hessian matrix of the Lennard-Jones cluster

Appendix: Hessian matrix of the Lennard-Jones cluster

The potential energy surface (PES) of an n-atomic Lennard-Jones (LJ) cluster is as follows:

$$\begin{aligned} V(x_1,y_1,z_1,\ldots,x_n,y_n,z_n) = 4 \epsilon \sum_{i=1}^{n} \sum _{j=i+1}^{n}\, \left[ \sigma ^{12}\left(\frac{1}{r_{ij}}\right)^{12}- \sigma^{6}\left(\frac{1}{r_{ij}}\right)^{6} \right] \end{aligned}$$
(32)

where the double sum can be shortened to \(\sum _{i<j}\), and

$$\begin{aligned} r_{ij}^2 = (x_i-x_j)^2 + (y_i-y_j)^2 +(z_i-z_j)^2 \end{aligned}$$
(33)

is the square of the distance between atoms i and j. \(\epsilon , \sigma\) are parameters of the current cluster.

\(V(\mathbf{q})\) is a \(3n\)-dimensional surface over \(I\!\!R^{3n}\). Let \(\mathbf{grad}(\mathbf{q})\) be its gradient vector, \(\nabla _\mathbf{q}V(\mathbf{q})\), and let \(\mathbf{H}(\mathbf{q})\) be the matrix of its second derivatives, the Hessian \(\nabla _\mathbf{q} \mathbf{grad}^T\). We could not find the calculation of the Hessian in the older literature; thus, we give it here in the appendix. We get for the distance between two atoms

$$\begin{aligned} \frac{\partial r_{ij}}{\partial x_i} = \frac{x_i-x_j}{r_{ij}}, \quad \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j-x_i}{r_{ij}}. \end{aligned}$$
(34)

A single component of the gradient becomes

$$\begin{aligned} \frac{\partial V}{\partial x_i} = 4 \epsilon \sum _{i\ne j}^n \, (x_i-x_j)\ \left[ -12 \sigma ^{12}\left(\frac{1}{r_{ij}}\right)^{14} +6 \sigma ^{6}\left(\frac{1}{r_{ij}}\right)^{8} \right].\end{aligned}$$
(35)

If we put the abbreviation

$$\begin{aligned} T1(ij) =: \left[ -12 \sigma ^{12}\left(\frac{1}{r_{ij}}\right)^{14} +6 \sigma ^{6}\left(\frac{1}{r_{ij}}\right)^{8} \right] \end{aligned}$$
(36)

and if we set for simplification of the summation \(T1(ii)=0\), then we can write

$$\begin{aligned} \frac{\partial V}{\partial x_i} = 4 \epsilon \sum _{j=1}^n \, (x_i-x_j)\ T1(ij), \end{aligned}$$
(37)

and analogously we have for \(i=1,\ldots ,n\)

$$\begin{aligned} \frac{\partial V}{\partial y_i}=4 \epsilon \sum _{j=1}^n \, (y_i-y_j)\ T1(ij) \ \quad \hbox {and}\ \quad \frac{\partial V}{\partial z_i} =4 \epsilon \sum _{j=1}^n \, (z_i-z_j)\ T1(ij). \end{aligned}$$
(38)

We further define the abbreviation

$$\begin{aligned} T2(ij) =: \left[ 12*14 \sigma ^{12}\left(\frac{1}{r_{ij}}\right)^{16} -6*8 \sigma ^{6}\left(\frac{1}{r_{ij}}\right)^{10} \right] \ . \end{aligned}$$
(39)

Again, we set \(T2(ii)=0\). Then, single components of the Hessian are for the same atom

$$\begin{aligned} H(x_i,x_i)=\frac{\partial ^2 V}{\partial x_i^2} = 4 \epsilon \sum _{j=1}^n \,\left( T1(ij) + (x_i-x_j)^2\ T2(ij) \right), \end{aligned}$$
(40)

and

$$\begin{aligned} H(x_i,y_i)=\frac{\partial ^2 V}{\partial x_i\,\partial y_i} = 4 \epsilon \sum _{j=1}^n \, (x_i-x_j)* (y_i-y_j)\ T2(ij), \end{aligned}$$
(41)

and analogously one gets \(H(x_i,z_i)\) and \(H(y_i,z_i)\) and their symmetric counterparts. If different atoms with numbers i and j are involved, then we get

$$\begin{aligned} H(x_i,x_j)=\frac{\partial ^2 V}{\partial x_i\,\partial x_j} = -4 \epsilon \,\left( T1(ij) + (x_i-x_j)^2\ T2(ij) \right), \end{aligned}$$
(42)

and

$$\begin{aligned} H(x_i,y_j)=\frac{\partial ^2 V}{\partial x_i\,\partial y_j} = -4 \epsilon \, (x_i-x_j)* (y_i-y_j)\ T2(ij), \end{aligned}$$
(43)

and analogously one gets \(H(x_i,z_j)\) and \(H(y_i,z_j)\) and their symmetric counterparts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quapp, W., Bofill, J.M. Locating saddle points of any index on potential energy surfaces by the generalized gentlest ascent dynamics. Theor Chem Acc 133, 1510 (2014). https://doi.org/10.1007/s00214-014-1510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1510-9

Keywords

Navigation