Skip to main content
Log in

Assessing the performances of some recently proposed density functionals for the description of organometallic structures

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The performances of a family of recently developed generalized gradient approximation (GGA) functionals based on the Tognetti–Cortona–Adamo (TCA) family and making use of the gradient-regulated connection (GRAC) approach are here tested on an uncommon benchmark set for the prediction of transition state (TS) structures and energies of a series of four reactions involving an early transition metal (Zr, d 0). This benchmark test thus represents the first step in the organometallic world in which d n ions allowing complex phenomena such as spin crossover represent the higher level of complexity. The results obtained show that the performances of the GRAC-xxx functionals are comparable to those of global hybrid functionals both in the prediction of reaction barriers and of structural features of TSs. More complex functional forms (such as range-separated hybrids) in average enhance the energetic features, but not necessarily the overall accuracy on calculated structures. On the other hand, and as expected, purposely developed functionals for the prediction of chemical reactivity provide both structural and energetic features in good agreement with post-HF results. The present study, besides proving the good performances of GGA functionals of the GRAC-TCA family for the prediction of TS structural parameters and energetics of metal containing systems, also underlines the importance of the use of diversified benchmark sets to allow a fair evaluation of functionals performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goerigk L, Grimme S (2011) J Chem Theory Comput 7:291–309

    Article  CAS  Google Scholar 

  2. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  3. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  4. Zheng J, Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:808–821

    Article  CAS  Google Scholar 

  5. Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:8996–8999

    Article  CAS  Google Scholar 

  6. Boese AD, Martin JML (2004) J Chem Phys 121:3405–3416

    Article  CAS  Google Scholar 

  7. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  8. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  9. Zein S, Borshch SA, Fleurat-Lessard P, Casida ME, Chermette H (2007) J Chem Phys 126:014105

    Article  Google Scholar 

  10. Bremond E, Pilard D, Ciofini I, Chermette H, Adamo C, Cortona P (2012) Theor Chem Acc 131:1184–1190

    Article  Google Scholar 

  11. Tognetti V, Cortona P, Adamo C (2008) J Chem Phys 128:034101

    Article  Google Scholar 

  12. Tognetti V, Cortona P, Adamo C (2008) Chem Phys Lett 460:536–539

    Article  CAS  Google Scholar 

  13. Coperet C, Grouiller A, Basset JM, Chermette H (2003) Chem Phys Chem 4:608–611

    Article  CAS  Google Scholar 

  14. Perdew JP, Schmidt K (2001) AIP 577: 1–20

    CAS  Google Scholar 

  15. Tognetti V, Cortona P, Adamo C (2009) Theor Chem Acc 122:257–264

    Article  CAS  Google Scholar 

  16. Tognetti V, Adamo C, Cortona P (2010) Interdiscip Sci Comput Life Sci 2:163–168

    Article  Google Scholar 

  17. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  18. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029–5037

    Article  CAS  Google Scholar 

  19. Grüning M, Gritsenko OV, van Gisbergen SJA, Baerends EJ (2001) J Chem Phys 114:652–660

    Article  Google Scholar 

  20. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413–7421

    Article  Google Scholar 

  21. Adamo C, Barone V (2002) J Chem Phys 116:5933–5940

    Article  CAS  Google Scholar 

  22. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  23. Perdew JP, Burke K (1996) Int J Quantum Chem 57:309–319

    Article  CAS  Google Scholar 

  24. Adamo C, Barone V (1998) J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  25. Zhang Y, Yang W (1998) Phys Rev Lett 80:890

    Article  CAS  Google Scholar 

  26. Ragot S, Cortona P (2004) J Chem Phys 121:7671–7680

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Parandekar PV, Mayhall NJ, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian DV, revision H.10, Gaussian, Inc., Wallingford, CT

  28. Hay PJ (1977) J Chem Phys 66:4377–4384

    Article  CAS  Google Scholar 

  29. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  30. Baerends EJ, et al (1999) ADF 1999, Department of Theoretical Chemistry, Vrije Universiteit, Amsterdam

  31. Slater JC (1951) Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  32. Gáspár R (1954) Acta Phys Acad Sci Hung 3:263–286

    Article  Google Scholar 

  33. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  34. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  35. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  36. Perdew JP (1986) Phys Rev B 34:7406

    Article  Google Scholar 

  37. Tao TM, Perdew JP, Staroverov VN, Scuseria G (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  38. Barone V, Adamo C (1994) Chem Phys Lett 224:432–438

    Article  CAS  Google Scholar 

  39. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  40. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  41. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  42. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  43. Chermette H (1998) Coord Chem Rev 178-180:699–721

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the ANR agency under the project DinfDFT ANR 2010 BLANC No. 0425 02 and by Sanofi-Aventis. Sylvain Chevalier and Anja Röder are acknowledged for a preliminary work on the project. The authors gratefully acknowledge the GENCI/CINES for HPC resources/computer time (Project cpt2130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlo Adamo or Henry Chermette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brémond, É., Kalhor, M.P., Bousquet, D. et al. Assessing the performances of some recently proposed density functionals for the description of organometallic structures. Theor Chem Acc 132, 1401 (2013). https://doi.org/10.1007/s00214-013-1401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1401-5

Keywords

Navigation