Skip to main content
Log in

Association reaction between SiH3 and H2O2: a computational study of the reaction mechanism and kinetics

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The association reaction between silyl radical (SiH3) and H2O2 has been studied in detail using high-level composite ab initio CBS-QB3 and G4MP2 methods. The global hybrid meta-GGA M06 and M06-2X density functionals in conjunction with 6-311++G(d,p) basis set have also been applied. To understand the kinetics, variational transition-state theory calculation is performed on the first association step, and successive unimolecular reactions are subjected to Rice–Ramsperger–Kassel–Marcus calculations to predict the reaction rate constants and product branching ratios. The bimolecular rate constant for SiH3–H2O2 association in the temperature range 250–600 K, k(T) = 6.89 × 10−13 T −0.163exp(−0.22/RT) cm3 molecule−1 s−1 agrees well with the current literature. The OH production channel, which was experimentally found to be a minor one, is confirmed by the rate constants and branching ratios. Also, the correlation between our theoretical work and experimental literature is established. The production of SiO via secondary reactions is calculated to be one of the major reaction channels from highly stabilized adducts. The H-loss pathway, i.e., SiH2(OH)2 + H, is the major decomposition channel followed by secondary dissociation leading to SiO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jasinski JM, Meyerson BS, Scott BA (1987) Ann Rev Phys Chem 38:109

    Article  CAS  Google Scholar 

  2. Jasinski JM, Gates SM (1991) Acc Chem Res 24:9

    Article  CAS  Google Scholar 

  3. Pankove JI (ed) (1984) Semiconductors and Semimetals, vol 21A. Academic Press, New York

    Google Scholar 

  4. Jensen KF (1989) Adv Chem Ser 221:199

    Article  CAS  Google Scholar 

  5. Blankenship MG, Deneka CW (1982) IEEE J Quantum Electron QE-18:1418

    Article  Google Scholar 

  6. Suga S, Koda S (1988) Jpn J Appl Phys 27:L1966

    Article  Google Scholar 

  7. Hartman JR, Famil-Ghiriha J, Ring MA, O’Neal HE (1987) Combust Flame 68:43

    Article  CAS  Google Scholar 

  8. Koda S (1992) Prog Energy Combust 18:513

    Article  CAS  Google Scholar 

  9. Koda S, Fujiwara O (1986) In: Proceedings of the 21st international symposium on combustion, The Combustion Institute, Pittsburgh, p 1861

  10. Chung SL, Tsai MS, Lin HD (1991) Combust Flame 85:134

    Article  CAS  Google Scholar 

  11. Kondo S, Tokuhashi K, Nagai H, Iwasaki M, Kaise M (1995) Combust Flame 101:170

    Article  CAS  Google Scholar 

  12. Kondo S, Tokuhashi K, Nagai H, Iwasaki M, Kaise M (1994) Combust Flame 97:296

    Article  CAS  Google Scholar 

  13. McLain AG, Jachimowski CJ, Rogers RC (1983) NASA TP-2114

  14. Jachimowski CJ, McLain AG (1983) NASA TP-2129

  15. Koda S, Fujiwara O, Ohnishi T (1986) Combust Flame 65:121

    Article  CAS  Google Scholar 

  16. Koda S, Fujiwara O (1988) Combust Flame 73:187

    Article  CAS  Google Scholar 

  17. Tokuhashi K, Horiguchi S, Urano Y, Iwasaka M, Ohtani H, Kondo S (1990) Combust Flame 82:40

    Article  CAS  Google Scholar 

  18. Britten JA, Tong J, Westbrook CK (1990) In: Twenty-third symposium (international) on combustion, The Combustion Institute, Pittsburgh, p 195

  19. Fukutani S, Uodome Y, Kunioshi N, Jinno H (1991) Bull Chem Soc Jpn 64:2328

    Article  CAS  Google Scholar 

  20. Zachariah MR, Semerjian HG (1989) AIChE J 35:2003

    Article  CAS  Google Scholar 

  21. Zachariah MR (1990) In: Messing G (ed) Ceramic powder science III, vol 12, p 283

  22. Chesovnikov SA, Krasnoperov LN (1990) Kinet Catal 31:1125

    Google Scholar 

  23. Kushner MJ (1987) J Appl Phys 62:2803

    Article  CAS  Google Scholar 

  24. Robertson R, Gallagher A (1986) J Appl Phys 59:3402

    Article  CAS  Google Scholar 

  25. Gallagher A (1988) J Appl Phys 63:2406

    Article  CAS  Google Scholar 

  26. Itabashi N, Kato K, Nishiwaki N, Goto T, Yamada C, Hirota E (1989) Jpn J Appl Phys 28:L325

    Article  CAS  Google Scholar 

  27. Krasnoperov LN, Chesnokov EN, Panfilov VN (1984) Chem Phys 89:297

    Article  CAS  Google Scholar 

  28. Yamada C, Hirota E (1986) Phys Rev Lett 56:923

    Article  CAS  Google Scholar 

  29. Slagle IR, Bernhardt JR, Gutman D (1988) Chem Phys Lett 149:180

    Article  CAS  Google Scholar 

  30. Sugawara K, Nakanaga T, Takeo H, Matsumura C (1989) Chem Phys Lett 157:309

    Article  CAS  Google Scholar 

  31. Koshi M, Miyoshi A, Matsui H (1991) J Phys Chem 95:9869

    Article  CAS  Google Scholar 

  32. Quandt R, Hershberger JF (1993) Chem Phys Lett 206:355

    Article  CAS  Google Scholar 

  33. Chasovnikov SA, Krasnoperov LN (1987) Chim Fiz 6:956

    CAS  Google Scholar 

  34. Kondo S, Tokuhashi K, Nagai H, Takahashi A, Kaise M, Sugie M, Aoyagi M, Mogi K, Minamino S (1997) J Phys Chem A 101:6015

    Article  CAS  Google Scholar 

  35. Darling CL, Schlegel HB (1994) J Phys Chem 98:8910

    Article  CAS  Google Scholar 

  36. Murakami Y, Koshi M, Matsui H, Kamiya K, Umeyama H (1996) J Phys Chem 100:17501

    Article  CAS  Google Scholar 

  37. Koshi M, Nishida N, Murakami Y, Matsui H (1993) J Phys Chem 97:4473

    Article  CAS  Google Scholar 

  38. Loh SK, Beach DB, Jasinski JM (1990) Chem Phys Lett 169:55

    Article  CAS  Google Scholar 

  39. Marshall P (1993) Chem Phys Lett 201:493

    Article  CAS  Google Scholar 

  40. Matsumoto K, Koshi M, Okawa K, Matsui H (1996) J Phys Chem 100:8796

    Article  CAS  Google Scholar 

  41. Loh SK, Jasinski JM (1991) J Chem Phys 95:4914

    Article  CAS  Google Scholar 

  42. Seetula JA, Feng Y, Gutman D, Seakins PW, Pilling JM (1991) J Phys Chem 95:1658

    Article  CAS  Google Scholar 

  43. Raghunath P, Lin MC (2010) J Phys Chem A 114:13353

    Article  CAS  Google Scholar 

  44. Meyer JP, Hershberger JF (2003) J Phys Chem A 107:5963

    Article  CAS  Google Scholar 

  45. Roland RP, Anderson RW (2001) Chem Mater 13:2501

    Article  CAS  Google Scholar 

  46. Roland RP, Bolle M, Anderson RW (2001) Chem Mater 13:2493

    Article  CAS  Google Scholar 

  47. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  48. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397

    Article  CAS  Google Scholar 

  49. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  50. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 127:124105

    Article  Google Scholar 

  51. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  52. Gonzales C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  Google Scholar 

  53. Gonzales C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  Google Scholar 

  54. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, ReVision B.01. Gaussian Inc., Wallingford

    Google Scholar 

  55. Nicolaides A, Rauk A, Glukhovtsev MN, Radom L (1996) J Phys Chem 100:17460

    Article  CAS  Google Scholar 

  56. Afeefy HY, Liebman JF, Stein SE (2005) Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, MD. (http://webbook.nist.gov)

  57. Duncan WT, Bell RL, Truong TN (1998) TheRate: Program for ab initio direct dynamics calculations of thermal and vibrational-state selected rate constants. J Comput Chem 19:1039 (http://cse-online.net)

  58. Silva GD, Bozzelli JW (2008) J Phys Chem A 112:3566

    Article  Google Scholar 

  59. Silva GD, Hamdan MR, Bozzelli JW (2009) J Chem Theory Comput 5:3185

    Article  Google Scholar 

  60. Mandal D, Mondal B, Das AK (2011) Phys Chem Chem Phys 13:4583

    Article  CAS  Google Scholar 

  61. Klippenstein SJ (1992) J Chem Phys 96:367

    Article  Google Scholar 

  62. Klippenstein SJ, Marcus RA (1987) J Chem Phys 87:3410

    Article  CAS  Google Scholar 

  63. Wardlaw DM, Marcus RA (1984) Chem Phys Lett 110:230

    Article  CAS  Google Scholar 

  64. Wardlaw DM, Marcus RA (1985) J Chem Phys 83:3462

    Article  CAS  Google Scholar 

  65. Mokrushin V, Bedanov V, Tsang W, Zachariah M, Knyazev V (2009) ChemRate Version 1.5.8. National Institute of Standards and Testing, Gaithersburg, MD

    Google Scholar 

  66. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  67. Lee TJ, Taylor PR (1989) Int J Quantum Chem S23:199

    Google Scholar 

  68. Rienstra-Kiracofe JC, Allen WD, Schaefer HF III (2000) J Phys Chem A 104:9823

    Article  CAS  Google Scholar 

  69. Peiro-Garcia J, Nebot-Gil I (2003) Chem Phys Chem 4:843

    Article  CAS  Google Scholar 

  70. Peiro-Garcia J, Nebot-Gil I (2003) J Comput Chem 24:1657

    Article  CAS  Google Scholar 

  71. Martinez-Avila M, Peiro-Garcia J (2003) Chem Phys Lett 370:313

    Article  CAS  Google Scholar 

  72. Lambert N, Kaltsoyannis N, Price SD, Zabka J, Herman Z (2006) J Phys Chem A 110:2898

    Article  CAS  Google Scholar 

  73. Miller SR, Schultz NE, Truhlar DG, Leopold DG (2009) J Chem Phys 130:024304

    Article  Google Scholar 

  74. Zachariah MR, Tsang W (1995) J Phys Chem 99:5308

    Article  CAS  Google Scholar 

  75. Doncaster AM, Walsh R (1981) Int J Chem Kinet 13:503

    Article  CAS  Google Scholar 

  76. Chase MW Jr (1998) NIST-JANAF thermochemical tables, 4th edn. J Phys Chem Ref Data Monogr 9:1–1951

    Google Scholar 

  77. Gronert S, O’Hair RAJ, Prodnuk S, Sulzle D, Damrauer R, DePuy CH (1990) J Am Chem Soc 112:997

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.S. is very much grateful to the Council of Scientific and Industrial Research (CSIR), Government of India, for providing him research fellowships. A.K.D. is grateful to the Council of Scientific and Industrial Research (CSIR), Govt. of India, for a research grant under scheme number: 03(1168)/10/EMR-II. Thanks are due to Mr. Debasish Mandal for his assistance and helpful discussions. We are thankful to Prof. Vladimir Mokrushin for helping us on time-dependent RRKM master equation simulation with ChemRate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit K. Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOCX 451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, K., Mondal, B., Pakhira, S. et al. Association reaction between SiH3 and H2O2: a computational study of the reaction mechanism and kinetics. Theor Chem Acc 132, 1375 (2013). https://doi.org/10.1007/s00214-013-1375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1375-3

Keywords

Navigation