Skip to main content
Log in

Effects of microhydration on the characteristics of cation–phenol complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The properties of complexes formed by phenol and K+, Na+, Li+ and Mg2+ in the presence of up to four water molecules have been studied by means of computational methods. The interaction becomes stronger as the size of the cation decreases, showing almost no preference between coordinating to the aromatic ring or to the hydroxyl oxygen. As water molecules are introduced, a variety of stable structures arise, where water molecules establish hydrogen bonds among themselves and with the hydroxyl group of phenol. For the most polarizing cations, the strong cation···water interaction gives most stable minima corresponding to arrangements with water molecules and phenol coordinated directly to the cation, with no significant hydrogen bonds among them. However, in Na+ complexes and especially in K+ ones, the interaction with the cation is weaker, so hydrogen bond formation starts to be competitive as more water molecules are included, the most stable minima corresponding to structures where not all water molecules or phenol are directly bound to the cation. This behavior is also reflected on the predicted vibrational spectra, which agree with those determined experimentally. Up to three water molecules, only for K+ and to a less extent Na+, stable minima are found showing red-shifted O–H stretching bands corresponding to water···water and water···phenol hydrogen bonds. With four water molecules, at least one water molecule is located in a second solvation shell, all cations exhibiting red-shifted bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hobza P, Zaradnik R (1988) Intermolecular complexes: the role of van der Waals systems in physical chemistry and the biodisciplines. Elsevier, Amsterdam

    Google Scholar 

  2. Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. VCH, cop., Weinheim

  3. Tsuzuki S, Uchimaru T (2006) Magnitude and physical origin of intermolecular interactions of aromatic molecules: recent progress of computational studies. Curr Org Chem 10(7):745–762

    Article  CAS  Google Scholar 

  4. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42(11):1210–1250. doi:10.1002/anie.200390319

    Article  CAS  Google Scholar 

  5. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50(21):4808–4842. doi:10.1002/anie.201007560

    Article  CAS  Google Scholar 

  6. Scrutton NS, Raine AR (1996) Cation-pi bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochem J 319(1):1–8

    CAS  Google Scholar 

  7. Dougherty DA (2007) Cation-π interactions involving aromatic amino acids. J Nutr 137:1504S–1508S

    CAS  Google Scholar 

  8. Waters ML (2004) Aromatic interactions in peptides: impact on structure and function. Biopolymers (Peptide Science) 76(5):435–445. doi:10.1002/bip.20144

    Article  CAS  Google Scholar 

  9. Ma JC, Dougherty DA (1997) The cation-π interaction. Chem Rev 97(5):1303–1324. doi:10.1021/cr9603744

    Article  CAS  Google Scholar 

  10. Gallivan JP, Dougherty DA (1999) Cation-π interactions in structural biology. Proc Nart Acad Sci USA 96:9459–9464

    Article  CAS  Google Scholar 

  11. Gallivan JP, Dougherty DA (2000) A computational study of cation-π interactions vs salt bridges in aqueous media: implications for protein engineering. J Am Chem Soc 122:870–874

    Article  CAS  Google Scholar 

  12. Anderson MA, Ogbay B, Arimoto R, Sha W, Kisselev OG, Cistola DP, Marshall GR (2006) Relative strength of cation-π vs salt-bridge interactions: the Gtα(340–350) peptide/rhodopsin system. J Am Chem Soc 128(23):7531–7541. doi:10.1021/ja058513z

    Article  CAS  Google Scholar 

  13. Berry BW, Elvekrog MM, Tommos C (2007) Environmental modulation of protein cation-π interactions. J Am Chem Soc 129(17):5308–5309. doi:10.1021/ja068957a

    Article  CAS  Google Scholar 

  14. Hughes RM, Benshoff ML, Waters ML (2007) Effects of chain length and N-methylation on a cation-π interaction in a β-hairpin peptide. Chem Eur J 13:5753–5764. doi:10.1002/chem.200601753

    Google Scholar 

  15. Hughes RM, Waters ML (2005) Influence of N-methylation on a cation-π interaction produces a remarkably stable β-hairpin peptide. J Am Chem Soc 127:6518–6519. doi:10.1021/ja0507259

    Article  CAS  Google Scholar 

  16. Hughes RM, Waters ML (2006) Effects of lysine acetylation in a β-hairpin peptide: comparison of an amide-π and a cation-π interaction. J Am Chem Soc 128:13586–13591. doi:10.1021/ja0648460

    Article  CAS  Google Scholar 

  17. Hughes RM, Waters ML (2006) Arginine methylation in a β-hairpin peptide: implications for Arg-π interactions, ΔCp, and the cold denatured state. J Am Chem Soc 128:12735–12742. doi:10.1021/ja061656g

    Article  CAS  Google Scholar 

  18. Khandelia H, Kaznessis YN (2006) Cation-π interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations. J Phys Chem B 111(1):242–250. doi:10.1021/jp064776j

    Article  Google Scholar 

  19. Mason PE, Dempsey CE, Neilson GW, Kline SR, Brady JW (2009) Preferential interactions of guanidinum ions with aromatic groups over aliphatic groups. J Am Chem Soc 131(46):16689–16696. doi:10.1021/ja903478s

    Article  CAS  Google Scholar 

  20. Riemen AJ, Waters ML (2009) Design of highly stabilized β-hairpin peptides through cation-π interactions of lysine and N-methyllysine with an aromatic pocket. Biochemistry 48(7):1525–1531. doi:10.1021/bi801706k

    Article  CAS  Google Scholar 

  21. Shi Z, Olson CA, Kallenbach NR (2002) Cation-π interaction in model α-helical peptides. J Am Chem Soc 124(13):3284–3291. doi:10.1021/ja0174938

    Article  CAS  Google Scholar 

  22. Tatko CD, Waters ML (2003) Cation pi en beta-hairpin. Protein Sci 12:2443–2452

    Article  CAS  Google Scholar 

  23. Kim D, Hu S, Tarakeshwar P, Kim KS, Lisy JM (2003) Cation-π interactions: a theoretical investigation of the interaction of metallic and organic cations with alkenes, arenes, and heteroarenes. J Phys Chem A 107:1228–1238. doi:10.1021/jp0224214

    Article  CAS  Google Scholar 

  24. Cabarcos OM, Weinheimer CJ, Lisy JM (1999) Size selectivity by cation-π interactions: solvation of K+ and Na+ by benzene and water. J Chem Phys 110:8429–8435. doi:10.1063/1.478752

    Article  CAS  Google Scholar 

  25. Cabarcos OM, Weinheimer CJ, Lisy JM (1998) Competitive solvation of K+ by benzene and water: cation-π interactions and π-hydrogen bonds. J Chem Phys 108:5151–5154. doi:10.1063/1.476310

    Article  CAS  Google Scholar 

  26. Xiao JT, Wei LZ, Cui M, Xiao ML, Jian DG, Silman I, Sussman JL, Hua LJ, Ru YJ, Chen KX (2001) Noncovalent interaction or chemical bonding between alkaline earth cations and benzene? A quantum chemistry study using MP2 and density-functional theory methods. Chem Phys Lett 349:113–122

    Article  CAS  Google Scholar 

  27. Adamo C, Berthier G, Savinelli R (2004) Solvation effects on cation–p interactions: a test study involving the quaternary ammonium ion. Theor Chem Acc 111(2):176–181. doi:10.1007/s00214-003-0507-6

    Article  CAS  Google Scholar 

  28. Xu Y, Shen J, Zhu W, Luo X, Chen K, Jiang H (2005) Influence of the water molecule on cation-π interaction: ab initio second order Møller–Plesset perturbation theory (MP2) calculations. J Phys Chem B 109(12):5945–5949. doi:10.1021/jp044568w

    Article  CAS  Google Scholar 

  29. Cabaleiro-Lago EM, Rodriguez-Otero J, Pena-Gallego A (2011) Effect of microhydration on the guanidinium[centered ellipsis]benzene interaction. J Chem Phys 135(21):214301–214309

    Article  Google Scholar 

  30. Reddy AS, Zipse H, Sastry GN (2007) Cation-π interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. J Phys Chem B 111(39):11546–11553. doi:10.1021/jp075768l

    Article  CAS  Google Scholar 

  31. Vijay D, Zipse H, Sastry GN (2008) On the cooperativity of cation-π and hydrogen bonding interactions. J Phys Chem B 112(30):8863–8867. doi:10.1021/jp804219e

    Article  CAS  Google Scholar 

  32. Rao JS, Zipse H, Sastry GN (2009) Explicit solvent effect on cation-π interactions: a first principle investigation. J Phys Chem B 113(20):7225–7236. doi:10.1021/jp900013e

    Article  CAS  Google Scholar 

  33. Sponer J, Sponer JE, Leszczynski J (2000) Cation-π and amino-acceptor interactions between hydrated metal cations and DNA bases. A quantum-chemical view. J Biomol Struct Dyn 17:1087–1096

    Article  CAS  Google Scholar 

  34. Leavens FMV, Churchill CDM, Wang S, Wetmore SD (2011) Evaluating how discrete water molecules affect protein–DNA π–π and π + –π stacking and T-shaped interactions: the case of histidine-adenine dimers. J Phys Chem B 115(37):10990–11003. doi:10.1021/jp205424z

    Article  CAS  Google Scholar 

  35. Larrucea J, Rezabal E, Marino T, Russo N, Ugalde JM (2010) Ab initio study of microsolvated Al3+-aromatic amino acid complexes. J Phys Chem B 114:9017–9022. doi:10.1021/jp101874p

    Article  CAS  Google Scholar 

  36. Miller DJ, Lisy JM (2006) Hydration of ion-biomolecule complexes: ab initio calculations and gas-phase vibrational spectroscopy of K+ (indole)m (H2O)n. J Chem Phys 124(18):184301–184307

    Article  Google Scholar 

  37. Vaden TD, Lisy JM (2004) Characterization of hydrated Na + (phenol) and K + (phenol) complexes using infrared spectroscopy. J Chem Phys 120:721–730. doi:10.1063/1.1630962

    Article  CAS  Google Scholar 

  38. Amunugama R, Rodgers MT (2002) The influence of substituents on cation-π interactions. 4. Absolute binding energies of alkali metal cation-phenol complexes determined by threshold collision-induced dissociation and theoretical studies. J Phys Chem A 106:9718–9728. doi:10.1021/jp0211584

    Article  CAS  Google Scholar 

  39. Watanabe H, Iwata S (1996) Theoretical studies of geometric structures of phenol-water clusters and their infrared absorption spectra in the O–H stretching region. J Chem Phys 105(2):420–431

    Article  CAS  Google Scholar 

  40. Gerhards M, Kleinermanns K (1995) Structure and vibrations of phenol(H2O)2. J Chem Phys 103(17):7392–7400

    Article  CAS  Google Scholar 

  41. Wu R, Brutschy B (2004) Study on the structure and intra- and intermolecular hydrogen bonding of 2-methoxyphenol. (H2O)n (n = 1,2). Chem Phys Lett 390(1–3):272–278

    Article  CAS  Google Scholar 

  42. Benoit DM, Clary DC (2000) Quantum simulation of phenol-water clusters. J Phys Chem A 104(23):5590–5599

    Article  CAS  Google Scholar 

  43. Ebata T, Fujii A, Mikami N (1996) Structures of size selected hydrogen-bonded phenol-(H2O)n clusters in S0, S1 and ion. Int J Mass Spectrom 159:111–124

    Article  CAS  Google Scholar 

  44. Janzen C, Spangenberg D, Roth W, Kleinermanns K (1999) Structure and vibrations of phenol(H2O)7,8 studied by infrared-ultraviolet and ultraviolet–ultraviolet double-resonance spectroscopy and ab initio theory. J Chem Phys 110(20):9898–9907

    Article  CAS  Google Scholar 

  45. Roth W, Schmitt M, Jacoby C, Spangenberg D, Janzen C, Kleinermanns K (1998) Double resonance spectroscopy of phenol(H2O)1–12: evidence for ice-like structures in aromatic-water clusters? Chem Phys 239(1–3):1–9

    Article  CAS  Google Scholar 

  46. Sodupe M, Oliva A, Bertran J (1997) Theoretical study of the ionization of phenol-water and phenol-ammonia hydrogen-bonded complexes. J Phys Chem A 101(48):9142–9151

    Article  CAS  Google Scholar 

  47. Kupper J, Westphal A, Schmitt M (2001) The structure of the binary phenol-methanol cluster: a comparison of experiment and ab initio theory. Chem Phys 263(1):41–53

    Article  CAS  Google Scholar 

  48. Kryachko ES, Nguyen MT (2002) fenol acetionitrilo. J Phys Chem A 106:4267–4271

    Article  CAS  Google Scholar 

  49. Cabaleiro-Lago EM, Pena-Gallego A, Rodriguez-Otero J (2008) Study of the interaction in clusters formed by phenol and CH3X (X = CN, F, Cl) molecules. J Chem Phys 128(19):194311–194318

    Article  Google Scholar 

  50. Michaux C, Wouters J, Perpete EA, Jacquemin D (2008) Microhydration of protonated glycine: an ab initio family tree. J Phys Chem B 112(8):2430–2438. doi:10.1021/jp710034r

    Article  CAS  Google Scholar 

  51. Michaux C, Wouters J, Perpète EA, Jacquemin D (2008) Stepwise hydration of protonated proline. J Phys Chem B 112(26):7702–7705. doi:10.1021/jp8023155

    Article  CAS  Google Scholar 

  52. Yao Y, Chen D, Zhang S, Li Y, Tu P, Liu B, Dong M (2011) Building the first hydration shell of deprotonated glycine by the MCMM and ab initio methods. J Phys Chem B 115(19):6213–6221. doi:10.1021/jp1117097

    Article  CAS  Google Scholar 

  53. Prakash M, Subramanian V, Gadre SR (2009) Stepwise hydration of protonated carbonic acid: a theoretical study. The Journal of Physical Chemistry A 113(44):12260–12275. doi:10.1021/jp904576u

    Article  CAS  Google Scholar 

  54. Sharma B, Rao JS, Sastry GN (2011) Effect of solvation on ion binding to imidazole and methylimidazole. J Phys Chem A 115(10):1971–1984. doi:10.1021/jp1120492

    Article  CAS  Google Scholar 

  55. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  56. Chalasinski G, Szczesniak MM (2000) State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev 100(11):4227–4252

    Article  CAS  Google Scholar 

  57. Cabaleiro-Lago E, Rodríguez-Otero J, Peña-Gallego Á (2011) Study of the interaction between aniline and CH3CN, CH3Cl and CH3F. Theor Chem Acc 128(4):531–539. doi:10.1007/s00214-010-0789-4

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc, Wallingford CT

  59. Marshall MS, Steele RP, Thanthiriwatte KS, Sherrill CD (2009) Potential energy curves for cation-π interactions: off-axis configurations are also attractive. J Phys Chem A 113(48):13628–13632. doi:10.1021/jp906086x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the Ministerio de Ciencia e Innovación and the ERDF 2007–2013 (Grant No. CTQ2009-12524). We are also thankful to the Centro de Supercomputación de Galicia (CESGA) for the use of their computers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique M. Cabaleiro-Lago.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2012_1290_MOESM1_ESM.docx

Electronic supplementary material The online version of this article contains supplementary material, which is available to authorized users. (DOCX 6,829 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campo-Cacharrón, A., Cabaleiro-Lago, E.M. & Rodríguez-Otero, J. Effects of microhydration on the characteristics of cation–phenol complexes. Theor Chem Acc 131, 1290 (2012). https://doi.org/10.1007/s00214-012-1290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1290-z

Keywords

Navigation