Skip to main content
Log in

On the spectral intensities of vibrational transitions in polyatomic molecules: role of electrical and mechanical anharmonicities

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A convergence study of intensities of transitions from vibrational ground state to the lower lying states is done with respect to the rank of the dipole moment surface (DMS) in the Taylor series expansion of the DMS. The relative roles of the mechanical and electrical anharmonicity are analyzed in the calculation of the intensities of vibrational transitions from ground state. We find that at least a quadratic expansion of the dipole moment functional is necessary to predict the intensities of vibrational transitions. The mechanical anharmonicity becomes important when the resonances between the vibrational states are significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lenhmann KK, Smith AM (1990) J Chem Phys 93:6140

    Article  Google Scholar 

  2. McCoy AB, Sibert EL (1991) J Chem Phys 95:3488

    Article  CAS  Google Scholar 

  3. McCoy AB, Guasco TL, Leavitt CM, Olesen SG, Johnson MA (2012) Phys Chem Chem Phys 14:7205

    Article  CAS  Google Scholar 

  4. Aoyagi M, Gray SK (1991) J Chem Phys 94:195

    Article  CAS  Google Scholar 

  5. Barone V (2004) J Chem Phys 120:3059

    Article  CAS  Google Scholar 

  6. Hansen MB, Christiansen O, Toffoli D, Kongsted J (2008) J Chem Phys 128:174106

    Article  Google Scholar 

  7. Liu A, Hu S, Zhu Q (2005) J Chem Phys 123:174305

    Article  Google Scholar 

  8. Carney DC, Sprandel LL, Kern CW (1978) Adv Chem Phys 37:305

    Article  CAS  Google Scholar 

  9. Bowman JM (1978) J Chem Phys 68:608

    Article  CAS  Google Scholar 

  10. Bowman JM (1986) J Chem Phys 19:202

    CAS  Google Scholar 

  11. Christoffel KM, Bowman JM (1982) Chem Phys Lett 85:220

    Article  CAS  Google Scholar 

  12. Carter S, Handy NC (1986) Comput Phys Rep 5:117

    Article  Google Scholar 

  13. Carter S, Meyer W (1990) J Chem Phys 93:8902

    Article  CAS  Google Scholar 

  14. Culot F, Liévin J (1994) Theor Chim Acta 89:227

    Article  CAS  Google Scholar 

  15. Culot F, Laruelle F, Liévin J (1995) Theor Chim Acta 92:221

    Google Scholar 

  16. Heislbetz S, Rauhut G (2010) J Chem Phys 132:124102

    Article  Google Scholar 

  17. Jung JO, Gerber RB (1996) J Chem Phys 105:10332

    Article  CAS  Google Scholar 

  18. Chaban G, Jung JO, Gerber RB (1999) J Chem Phys 111:1823

    Article  CAS  Google Scholar 

  19. Matsunaga N, Chaban GM, Gerber RB (2002) J Chem Phys 117:3541

    Article  CAS  Google Scholar 

  20. Yagi K, Hirata S, Hirao K (2008) Phys Chem Chem Phys 10:1781

    Article  CAS  Google Scholar 

  21. Sibert EL (1988) J Chem Phys 88:4378

    Article  CAS  Google Scholar 

  22. McCoy AB, Sibert EL (1990) J Chem Phys 92:1893

    Article  CAS  Google Scholar 

  23. McCoy AB, Sibert EL (1991) J Chem Phys 95:3476

    Article  CAS  Google Scholar 

  24. Nagalakshmi V, Lakshminarayana V, Sumithra G, Durga Prasad M (1994) Chem Phys Lett 217:279

    Article  Google Scholar 

  25. Durga Prasad M (2000) Indian J Chem 39:196

    Google Scholar 

  26. Banik S, Pal S, Durga Prasad M (2008) J Chem Phys 129:134111

    Article  Google Scholar 

  27. Banik S, Pal S, Durga Prasad M (2010) J Chem Theor Comput 6:3198

    Article  CAS  Google Scholar 

  28. Christiansen O (2004) J Chem Phys 120:2149

    Article  CAS  Google Scholar 

  29. Seidler P, Christiansen O (2009) J Chem Phys 131:234109

    Article  Google Scholar 

  30. Durga Prasad M (1994) Theor Chim Acta 88:283

    Google Scholar 

  31. Green WH, Willetts A, Jayatilaka D, Handy NC (1990) Chem Phys Lett 169:127

    Article  CAS  Google Scholar 

  32. Willets A, Handy NC, Green WH, Jayatilaka D (1990) J Phys Chem 94:5608

    Article  Google Scholar 

  33. Rothman LS, Gamache RR, Goldman A, Brown LR, Toth RA, Picket HM, Poynter RL, Flaud JM, Camy-Peyret C, Barbe N, Husson N, Rinsland CP, Smith MAH (1987) Appl Optics 26:1045

    Article  Google Scholar 

  34. Reisner RA, Field RW, Kinsey JL, Dai HL (1984) J Chem Phys 80:5968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SB acknowledges the Dr. D. S. Kothari postdoctoral fellowship from UGC, India. MDP acknowledges support from UGC, India, in the form of CAS to the School of Chemistry, UPE to the University of Hyderabad and DST, India, for HPCF facility at the University of Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Durga Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banik, S., Durga Prasad, M. On the spectral intensities of vibrational transitions in polyatomic molecules: role of electrical and mechanical anharmonicities. Theor Chem Acc 131, 1282 (2012). https://doi.org/10.1007/s00214-012-1282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1282-z

Keywords

Navigation