Skip to main content
Log in

A multiconfigurational SCF computational method for the resolution of the vibrational Schrödinger equation in polyatomic molecules

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

A new variational method for solving the molecular vibration problem is proposed. The so-called VMCSCF method (vibrational multiconfigurational self-consistent field) is based on the super-CI algorithm, previously developed in the framework of electronicab initio calculations. This approach makes direct use of the generalised Brillouin theorem to ensure self-consistency. The method is dedicated to the study of strongly interacting states (vibrational resonances), which are one of the main sources of perturbation in vibrational spectra. The interest of the method to tackle resonance interactions is illustrated by means of test calculations performed on the water and formaldehyde molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jørgensen P, Simons J (eds) (1986) Geometrical derivatives of energy surfaces and molecular properties, NATO ASI Series C: Mathematical and Physical Sciences, Vol 166

  2. Koch H, Jensen HJ, Helgaker TU, Jørgensen P, Scuseria GE, Schaefer III HF (1990) J Chem Phys 92:4924

    Google Scholar 

  3. Stanton JF, Watts JD, Bartlett RJ (1990) J Chem Phys 94:404

    Google Scholar 

  4. Colwell SM, Jayatilaka D, Maslen PE, Amos RD, Handy NC (1991) Int J Quantum Chem 40:179

    Google Scholar 

  5. Scuseria GE (1991) J Chem Phys 94:442

    Google Scholar 

  6. Harding LB, Ermler WC (1985) J Comput Chem 6:13

    Google Scholar 

  7. Sana M (1981) Int J Quantum Chem 19:139; Sana M (1982) Theoret Chim Acta 60:543

    Google Scholar 

  8. Delon A, Jost R (1991) J Chem Phys 95:5686; Delon A, Jost R, Lombardi M (1991) J Chem Phys 95:5701

    Google Scholar 

  9. Holland JK, Newham DA, Mills IM, Herman M (1992) J Mol Spectrosc 151:346

    Google Scholar 

  10. Pique JP, Manners J, Sitja G, Joyeux M (1992) J Chem Phys 96:6495

    Google Scholar 

  11. Bramley MJ, Green WH, Handy NC (1991) Mol Phys 73:1183

    Google Scholar 

  12. Jensen P (1992) in: Wilson S, Dierksen GHF (eds) Methods in computational molecular physics, NATO ASI Series C: Physics, Vol 293, p 423

  13. Hoy AR, Mills IM, Strey G (1972) Mol Phys 24:1265

    Google Scholar 

  14. Carter S, Handy NC (1986) Comp Phys Rep 5:117

    Google Scholar 

  15. Tennyson J (1986) Comp Phys Rep 4:1

    Google Scholar 

  16. Carter S, Handy NC (1987) J Chem Phys 87:4294

    Google Scholar 

  17. Bačic Z, Light JC (1989) Annu Rev Phys Chem 40:469

    Google Scholar 

  18. Tennyson J, Miller S, Henderson JR (1992) in: Wilson (ed) Methods in computational chemistry, Vol 4, Plenum Press, New York

    Google Scholar 

  19. Bramley MJ, Carter S, Handy NC, Mills IM (1993) J Mol Spectrosc 157:301

    Google Scholar 

  20. Romanowski H, Bowman JM, Harding LB (1985) J Chem Phys 82:4155

    Google Scholar 

  21. Ermler WC, Rosenberg BJ, Shavitt I (1985) in: Bartlett RJ (ed) Comparison of ab initio quantum chemistry with experiment for small molecules. Reidel, Dordrecht, 171

    Google Scholar 

  22. Maslen PE, Handy NC, Amos RD, Jayatilaka D (1992) J Chem Phys 97:4233

    Google Scholar 

  23. Gaw JF, Willets A, Green WH, Handy NC (1991) in: Bowman JM (ed) Advances in molecular vibrations and collision dynamics, Vol 1B. JAI Press, Greenwich, Connecticut

    Google Scholar 

  24. Hidalgo A, Zuñiga J, Bastida A, Requena A (1989) Int J Quantum Chem 36:49

    Google Scholar 

  25. Cantarella E, Culot F, Liévin J (1992) Physica Scripta 46:489

    Google Scholar 

  26. Culot F, Liévin J (1992) Physica Scripta 46:502

    Google Scholar 

  27. Carney GD, Kern CW (1975) Int J Quantum Chem Symp 9:317

    Google Scholar 

  28. Whitehead RJ, Handy NC (1975) 55:356

  29. Foord A, Smith JG, Whiffen DH (1975) Mol Phys 29:1685

    Google Scholar 

  30. Suzuki I (1975) Bull Chem Soc Japan 48:1685

    Google Scholar 

  31. Handy NC, Carter S (1981) Chem Phys Lett 79:118; ibidem 83:216

    Google Scholar 

  32. Watson JKG (1970) Mol Phys 19:465

    Google Scholar 

  33. Watson JKG (1968) Mol Phys 15:479

    Google Scholar 

  34. Carter S, Handy NC (1982) J Mol Spectrosc 95:9

    Google Scholar 

  35. Carter S, Handy NC, Mills IM (1990) Phil Trans R Soc Lond A332:309

    Google Scholar 

  36. Jensen P (1989) J Mol Spectrosc 133:438

    Google Scholar 

  37. Dinelli BM, Miller S, Tennyson J (1994) J Mol Spectrosc 163:71

    Google Scholar 

  38. Romanowski H, Bowman JM (1984) Chem Phys Lett 110:235

    Google Scholar 

  39. Halonen L, Child MS, Carter S (1982) Mol Phys 47:1097

    Google Scholar 

  40. Benjamin I, Roosmalen OS, Levine RD (1984) J Chem Phys 81:3352

    Google Scholar 

  41. Epa VC (1990) J Chem Phys 93:3773

    Google Scholar 

  42. Bowman JM, Gazdy B (1991) J Chem Phys 94:454

    Google Scholar 

  43. Hidalgo A, Zuñiga J, Francés JM, Bastida A, Requena A (1991) Int J Quantum Chem 40:685

    Google Scholar 

  44. Carter S, Handy NC (1986) Mol Phys 57:175

    Google Scholar 

  45. Bramley MJ, Handy NC (1993) J Chem Phys 98:1378

    Google Scholar 

  46. Carney GD, Sprandel LL, Kern W (1978) 32:305

  47. Bowman JM (1978) J Chem Phys 68:608

    Google Scholar 

  48. Makarewicz J (1987) Mol Phys 61:547

    Google Scholar 

  49. Wierzbicki A, Bowman JM (1988) Computer Phys Comms 51:225

    Google Scholar 

  50. Romanowski H, Bowman JM (1985) QCPE Bull 5:64

    Google Scholar 

  51. Choi SE, Light JC (1992) J Chem Phys 97:7031

    Google Scholar 

  52. Henderson JR, Tennyson J, Sutcliffe BT (1993) J Chem Phys 98:7191

    Google Scholar 

  53. Bramley MJ, Carrington T (1993) J Chem Phys 99:8519

    Google Scholar 

  54. Bramley MJ, Tromp JW, Carrington T, Corey GC (1994) J Chem Phys 100:6175

    Google Scholar 

  55. McNichols A, Carrington T (1993) Chem Phys Lett 202:464

    Google Scholar 

  56. Froese Fischer C (1977) The Hartree-Fock method for atoms. A numerical approach. Wiley, New York

    Google Scholar 

  57. Wahl AC, Das G (1977) in: Schaefer III HF (ed) Modern theoretical chemistry, Vol 3. Plenum Press, New York, p 51

    Google Scholar 

  58. Ruedenberg K, Cheung LM, Elbert ST (1979) Int J Quantum Chem 16:1069

    Google Scholar 

  59. Werner HJ (1987) in: Lawley KP (ed) Advances in Chem Phys, Ab initio methods in quantum chemistry, Part 2, Vol LXVII. Wiley, New York, p 1

    Google Scholar 

  60. Jensen HJAa, Ågren H, Olsen J (1991) in: Clementi E (ed) Modern techniques in computational chemistry: MOTECC-91. ESCOM, Leiden, p 599

    Google Scholar 

  61. Roos BO (1987) in: Lawley KP (ed) Advances in Chem Phys, Ab initio methods in quantum chemistry, Part 2, Vol LXVII. Wiley, New York, p 399

    Google Scholar 

  62. Tobin L, Bowman JM (1980) Chem Phys 47:151

    Google Scholar 

  63. Schwenke DW (1992) J Chem Phys 96:3426

    Google Scholar 

  64. Nielsen HH (1951) Rev Mod Phys 32:90

    Google Scholar 

  65. Grein F, Chang TC (1971) Chem Phys Lett 91:149

    Google Scholar 

  66. Ruedenberg K, Cheung LM, Elbert ST (1980) Nat Resour Comput Chem Software Cat 1, Program QM01 (ALIS)

  67. Roos BO, Karström G, Malmqvist P-Å, Sadlej AJ, Widmark PO (1991) in: Clementi E (ed) Modern techniques in computational chemistry: MOTECC-91. ESCOM, Leiden, p 435

    Google Scholar 

  68. Brillouin L (1934) in: Hermann (ed) Les Champs Self-consistents de Hartee et de Fock, Act Sci et Ind 159

  69. Levy B, Berthier G (1968) Int J Quantum Chem 2:307

    Google Scholar 

  70. Godefroid M, Liévin J, Metz JY (1991) Int J Quantum Chem 40:243

    Google Scholar 

  71. Ruedenberg K, Schmidt MW, Dombek MM, Elbert ST (1982) Chem Phys 71:41; ibidem 71:51; ibidem 71:65

    Google Scholar 

  72. Löwdin PO (1970) in: Löwdin PO (ed) Advances in quantum chemistry, Vol 5. Academic Press, New York, p 185

    Google Scholar 

  73. Saunders VR, Hillier IH (1973) Int J Quantum Chem 7:699

    Google Scholar 

  74. Grein F, Banerjee A (1975) Int J Quantum Chem Symp 9:147

    Google Scholar 

  75. Werner HJ (1981) J Chem Phys 74:5794

    Google Scholar 

  76. Hoy AR, Mills IM, Strey G (1972) Mol Phys 24:1265

    Google Scholar 

  77. Hoy AR, Bunker PR (1979) J Mol Spectrosc 74:1

    Google Scholar 

  78. Reisner DE, Field RW, Kinsey JL, Dai HL (1984) J Chem Phys 80:5968

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culot, F., Liévin, J. A multiconfigurational SCF computational method for the resolution of the vibrational Schrödinger equation in polyatomic molecules. Theoret. Chim. Acta 89, 227–250 (1994). https://doi.org/10.1007/BF01225116

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01225116

Key words

Navigation