Skip to main content

Ab initio parametrized polarizable force field for rutile-type SnO2

Abstract

We report a new, polarizable classical force field for the rutile-type phase of SnO2, casserite. This force field has been parametrized using results from ab initio (density functional theory) calculations as a basis for fitting. The force field was found to provide structural, dynamical and thermodynamic properties of tin oxide that compare well with both ab initio and experimental results at ambient and high pressures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ling CD, Johnson M (2004) J Solid St Chem 177(6):1838

    Article  CAS  Google Scholar 

  2. 2.

    Kearley G, Johnson M (2010) Vib Spectrosc 53(1):54

    Article  CAS  Google Scholar 

  3. 3.

    Xu G, Zhong Z, Bing Y, Ye ZG, Shirane G (2006) Nat Mater 5:134

    Article  CAS  Google Scholar 

  4. 4.

    Ammundsen B, Burns GR, Islam MS, Kanoh H, Rozićre J (1999) J Phys Chem 103(25):5175

    Article  CAS  Google Scholar 

  5. 5.

    Tangney P, Scandolo S (2002) J Chem Phys 117(19):8898

    Article  CAS  Google Scholar 

  6. 6.

    Han XJ, Bergqvist L, Dederichs PH, Müller-Krumbhaar H, Christie JK, Scandolo S, Tangney P (2010) Phys Rev B 81:134108

    Article  Google Scholar 

  7. 7.

    Marrocchelli D, Salanne v, Madden PA, Simon C, Turq P (2009) Mol Phys 107:443

    Article  CAS  Google Scholar 

  8. 8.

    Tinte S, Stachiotti MG, Sepliarsky M, Migoni RL, Rodriguez CO (1999) J Phys Condens Matter 11(48):9679

    Article  CAS  Google Scholar 

  9. 9.

    Sepliarksky M, Wu Z, Asthagiri A, Cohen RE (2004) Ferroelectrics 301:55

    Article  Google Scholar 

  10. 10.

    Chopra K, Major S, Pandya D (1983) Thin Solid Films 102(1):1

    Article  CAS  Google Scholar 

  11. 11.

    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276(5317):1395

    Article  CAS  Google Scholar 

  12. 12.

    Wang Y, Jiang X, Xia Y (2003) J Am Chem Soc 125(52):16176

    Article  CAS  Google Scholar 

  13. 13.

    Haines J, Léger JM (1997) Phys Rev B 55:11144

    Article  CAS  Google Scholar 

  14. 14.

    Shieh SR, Kubo A, Duffy TS, Prakapenka VB, Shen G (2006) Phys Rev B 73:014105

    Article  Google Scholar 

  15. 15.

    Liu CM, Chen XR, Ji GF (2011) Comput Mater Sci 50(4):1571

    Article  CAS  Google Scholar 

  16. 16.

    Borges P, Scolfaro L, Leite Alves H, da Silva E (2010) Theor Chem Acc 126:39

    Article  CAS  Google Scholar 

  17. 17.

    Parlinski K, Kawazoe Y (2000) EPJ B 13:679

    CAS  Google Scholar 

  18. 18.

    Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) J Chem Phys 110(17):8254

    Article  CAS  Google Scholar 

  19. 19.

    Brommer P, Beck P, Chatzopoulos A, Gähler F, Roth J, Trebin HR (2010) J Chem Phys 132(19):194109

    Article  Google Scholar 

  20. 20.

    Wilson M, Madden PA (1993) J Phys Condens Matter 5(17):2687

    Article  Google Scholar 

  21. 21.

    Stadler J, Mikulla R, Trebin HR (1997) IJMPC 8:1131

    Article  Google Scholar 

  22. 22.

    Kresse FJ (1996) G Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  23. 23.

    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  24. 24.

    Hansen N (2006) In: Lozano J, Larranaga P, Inza I, Bengoetxea E (eds.) Towards a new evolutionary computation. Advances on estimation of distribution algorithms. Springer, Berlin, pp 75–102

  25. 25.

    Abramson M, Audet C, Couture G, Dennis J, Le Digabel S. The nomad project. Software available at http://www.gerad.ca/nomad.

  26. 26.

    Le Digabel S (2011) ACM Trans Math Softw 37(44):1

    Article  Google Scholar 

  27. 27.

    The Perl programming language, http://www.perl.org

  28. 28.

    Birch F (1947) Phys Rev 71:809

    Article  CAS  Google Scholar 

  29. 29.

    Chang E, Graham EK (1975) J Geophys Res 80:2595

    Article  CAS  Google Scholar 

  30. 30.

    Hellwig H, Goncharov AF, Gregoryanz E, Mao HK, Hemley RJ (2003) Phys Rev B 67:174110

    Article  Google Scholar 

  31. 31.

    Pick RM, Cohen MH, Martin RM (1970) Phys Rev B 1:910

    Article  Google Scholar 

  32. 32.

    Parliński K (2006) Software PHONON

  33. 33.

    Peercy PS, Morosin B (1973) Phys Rev B 7:2779

    Google Scholar 

  34. 34.

    Seki H, Ishizawa N, Mizutani N, Kato M (1984) J Ceram Soc Jpn 92:219

    CAS  Google Scholar 

  35. 35.

    Nóse S (1984) J Chem Phys 81(1):511

    Article  Google Scholar 

  36. 36.

    Hoover WG (1985) Phys Rev A 31:1695

    Article  Google Scholar 

  37. 37.

    Polyakov V, Mineev S, Clayton R, Hu G, Gurevich V, Khramov D, Gavrichev K, Gorbunov V, Golushina L (2005) Geochim cosmochim Acta 69(5):1287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Dr. Marek Paściak, Australian National University, for fruitful discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wojciech Miiller.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miiller, W., Kearley, G.J. & Ling, C.D. Ab initio parametrized polarizable force field for rutile-type SnO2 . Theor Chem Acc 131, 1216 (2012). https://doi.org/10.1007/s00214-012-1216-9

Download citation

Keyword

  • Tin dioxide
  • SnO2
  • Molecular dynamics
  • Force field parametrization
  • Ab initio
  • DFT