Skip to main content
Log in

Reactivity of H2O and the Si-terminated surface of silicon carbide studied with ONIOM method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reactivity of H2O and the Si-terminated silicon carbide surface (001) was investigated on the triplet potential energy surface with the combined first principle and molecular mechanics ONIOM(CASSCF:AM1:UFF) method for the (SiC)192·H2O model. It was found that the H2O molecule and the surface can form three physisorption complexes and follow five reaction paths to produce eight products, in which there are five main products having necessary energy barriers less than 300 kJ mol−1. Compared with that on the C-terminated surface, the interaction with the Si-terminated surface has stronger physisorption energy, smaller lowest necessary energy barrier, more main and more stable products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu Y, Su KH, Wang X, Wang YL, Zeng QF, Cheng LF, Zhang LT (2010) Chem Phys Lett 501:87

    Article  CAS  Google Scholar 

  2. Cicero G, Galli G, Catellani A (2004) J Phys Chem B 108:16518

    Article  CAS  Google Scholar 

  3. Cicero G, Galli G, Catellani A (2004) Phys Rev Lett 93:016102/1

    Google Scholar 

  4. Wang JJ, Zhang LT, Zeng QF, Vignoles LG, Guette A (2009) Chin Sci Bull 54:1487

    Google Scholar 

  5. Wang JJ, Zhang LT, Zeng QF, Vignoles LG, Cheng LF, Guette A (2009) Phys Rev B 79:125304/1

    Google Scholar 

  6. Maeda M, Nakamura K, Ohkubo T (1988) J Mater Sci 23:3933

    Article  CAS  Google Scholar 

  7. Wang JJ, Zhang LT, Zeng QF, Vignoles LG, Guette A (2008) J Am Ceram Soc 91:1665

    Google Scholar 

  8. Bermudez VM (1989) J Appl Phys 66:6084

    Article  CAS  Google Scholar 

  9. Bermudez VM (1995) Appl Sur Sci 84:45

    Article  CAS  Google Scholar 

  10. Amy F, Chabal YJ (2003) J Chem Phys 119:6201

    Article  CAS  Google Scholar 

  11. Ventra MD, Pantelides ST (1999) Phys Rev Lett 83:1624

    Article  Google Scholar 

  12. Wu SJ, Cheng LF, Zhang LT, Xu YD, Zhang Q (2006) Mater Sci Eng B 130:215

    Article  CAS  Google Scholar 

  13. Fukushima M, Zhou Y, Yoshizawa YI, Hirao K (2008) J Eur Ceram Soc 28:1043

    Article  CAS  Google Scholar 

  14. Okawa T, Fukuyama R, Hoshino Y, Nishimura T, Kido Y (2007) Sur Sci 601:706

    Article  CAS  Google Scholar 

  15. Voegeli W, Akimoto K, Urata T, Nakatani S, Sumitani K, Takahashi T, Hisada Y, Mitsuoka Y, Mukainakano S, Suguyama H, Zhang XW, Kawata H (2007) Sur Sci 601:1048

    Article  CAS  Google Scholar 

  16. Hoshino Y, Okawa T, Shibuya M, Nishimura T, Kido Y (2008) Sur Sci 602:3253

  17. Li SW, Feng ZD, Mei H, Zhang LT (2008) Mater Sci Eng A 487:424

    Article  Google Scholar 

  18. Liu CD, Cheng LF, Mei H, Luan XG (2009) Ceram Int 35:1397

    Article  CAS  Google Scholar 

  19. Yin XW, Cheng LF, Zhang LT, Xu YD (2003) Mater Sci Eng A 348:47

    Article  Google Scholar 

  20. Eaton HE, Linsey GD (2002) J Eur Ceram Soc 22:2741

    Article  CAS  Google Scholar 

  21. Irene EA, Ghez R (1977) J Electrochem Soc 124:1757

    Article  CAS  Google Scholar 

  22. Opila EJ (1999) J Am Ceram Soc 82:625

    Article  CAS  Google Scholar 

  23. Opila EJ Jr, Hann RE (1997) J Am Ceram Soc 80:197

    Article  CAS  Google Scholar 

  24. Opila EJ, Fox DS, Jacobson NS (1997) J Am Ceram Soc 80:1009

    Article  CAS  Google Scholar 

  25. Opila EJ, Smialek JL, Robinson RC, Fox DS, Jacobson NS (1999) J Am Ceram Soc 82:1826

    Article  CAS  Google Scholar 

  26. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (Theochem) 461–462:1

    Article  Google Scholar 

  27. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokum K (1996) J Phys Chem 100:19357

    Google Scholar 

  28. Svensson M, Humbel S, Morokuma K (1996) J Chem Phys 105:3654

    Article  CAS  Google Scholar 

  29. Tamura H, Gordon MS (2003) J Chem Phys 119:10318

    Article  CAS  Google Scholar 

  30. Hegarty D, Robb MA (1979) Mol Phys 38:1795

    Article  CAS  Google Scholar 

  31. Eade RHA, Robb MA (1981) Chem Phys Lett 83:362

    Article  CAS  Google Scholar 

  32. Schlegel HB, Robb MA (1982) Chem Phys Lett 93:43

    Article  CAS  Google Scholar 

  33. Bernardi F, Bottini A, McDougall JJW, Robb MA, Schlegel HB (1984) Far Symp Chem Soc 19:137

    Article  CAS  Google Scholar 

  34. Yamamoto N, Vreven T, Robb MA, Frisch MJ, Schlegel HB (1996) Chem Phys Lett 250:373

    Article  CAS  Google Scholar 

  35. Frisch MJ, Ragazos IN, Robb MA, Schlegel HB (1992) Chem Phys Lett 189:524

    Article  CAS  Google Scholar 

  36. Dewar M, Thiel W (1977) J Am Chem Soc 99:4499

    Article  Google Scholar 

  37. Dewar MJS, McKee ML, Rzepa HS (1978) J Am Chem Soc 100:3607

    Google Scholar 

  38. Dewar MJS, Zoebisch EG, Healy EF (1985) J Am Chem Soc 107:3902

    Article  CAS  Google Scholar 

  39. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024

    Article  Google Scholar 

  40. Maseras F, Morokuma K (1995) J Comput Chem 16:1170

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowsk J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT

  42. Pollmann J, Kruger P (2004) J Phys Condens Matt 16:S1659

    Article  CAS  Google Scholar 

  43. Powers JM, Wander A, Van Hove MA, Somorjai GA (1992) Surf Sci Lett 260:L7

    Article  CAS  Google Scholar 

  44. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  45. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the calculations was performed in the High Performance Computation Center of the Northwestern Polytechnical University. Supports by the National Natural Science Foundation of China (No. 50572089) and the Chinese 973 Fundamental Researches are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-He Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Su, KH., Zeng, QF. et al. Reactivity of H2O and the Si-terminated surface of silicon carbide studied with ONIOM method. Theor Chem Acc 131, 1101 (2012). https://doi.org/10.1007/s00214-012-1101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1101-6

Keywords

Navigation