Skip to main content
Log in

Theoretical study of formation of ion pairs in (NH3·HCl)(H2O)6 and (NH3·HF)(H2O)6

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have performed theoretical studies on sixteen molecular cubes for both (NH3·HCl)(H2O)6 and (NH3·HF)(H2O)6. We use an empirical gauge, based upon the N–H and H–X bond lengths, to categorize the degree to which the cubes are neutral adduct or ion pair in character. On this basis, we describe all sixteen cubes of the former as highly ionized, but only five of the latter as greater than 85% ionic in character. Addition of one or two bridging water molecules to form (NH3·HF)(H2O)7 or (NH3·HF)(H2O)8 raises the percent ionic character to greater than 85% for these systems. The relative energy of the cubes can be categorized based on simple chemical principles. The computed vibrational frequency corresponding to the proton stretch in the N–H–F framework shows the highest degree of redshifting for systems near 50% ion-pair character. Molecular cubes close to neutral adduct or to ion-pair character show less redshifting of this vibrational motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  2. Maréchal Y (2007) The hydrogen bond and the water molecule. Elsevier, New York

    Google Scholar 

  3. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  4. Grabowski SJ (ed) (2006) Hydrogen bonding—new insights. Challenges and advances in computational chemistry and physics, vol 3. Springer, New York

    Google Scholar 

  5. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, New York

    Google Scholar 

  6. Buckingham AD, Del Bene JE, McDowell SAC (2008) The hydrogen bond. Chem Phys Lett 463:1–10

    Article  CAS  Google Scholar 

  7. Skvortsov D, Lee SJ, Choi MY, Vilesov AF (2009) J Phys Chem A 113(26):7360–7365

    Article  CAS  Google Scholar 

  8. Gutberlet A, Schwaab G, Özgür B, Masia M, Kaczmarek A, Forbert H, Havenith M, Marx D (2009) Science 324:1545–1548

    Article  CAS  Google Scholar 

  9. Re S, Osamura Y, Suzuki Y, Schaefer HF III (1998) Structures and stability. J Chem Phys 109:973–977

    Article  CAS  Google Scholar 

  10. Morrison AM, Flynn SD, Liang T, Douberly GE (2010) J Phys Chem A 114(31):8090–8098

    Article  CAS  Google Scholar 

  11. Gómez PC, Gálvez O, Escribano R (2009) Phys Chem Chem Phys 11:9710–9719

    Article  Google Scholar 

  12. Anderson KE, Siepmann JI, McMurry PH, VandeVondele J (2008) J Am Chem Soc 130:14144–14147

    Article  CAS  Google Scholar 

  13. Osuna S, Swart M, Baerends EJ, Bickelhaupt FM, Solà M (2009) Chem Phys Chem 10:2955–2965

    Article  CAS  Google Scholar 

  14. Robertson WH, Johnson MA (2003) In: Leone SR, Alivisatos P, McDermott AE (eds) Annual review of physical chemistry, vol 54. Annual Reviews, Palo Alto, pp 173–213

  15. Markovitch O, Agmon N (2007) J Phys Chem A 111(12):2253–2256

    Article  CAS  Google Scholar 

  16. Belair SD, Francisco JS (2003) Phys Rev A 67(6):063206

    Article  Google Scholar 

  17. Gruenloh CJ, Carney JR, Arrington CA, Zwier TS, Fredericks SY, Jordan KD (1997) Science 276:1678–1681

    Article  CAS  Google Scholar 

  18. Kuo J-L, Klein ML (2004) J Chem Phys 120:4690–4695

    Article  CAS  Google Scholar 

  19. Stob MJ (1994) Private communication, Calvin College, July, 2007, Mathematica application of oriented graph theory. http://www.mathworld.wolfram.com/OrientedGraph. Harary, F. Graph Theory. Addison-Wesley, Reading, p 10

  20. Del Bene JE, Jordan MJT (1998) J Chem Phys 108(8):3205

    Article  CAS  Google Scholar 

  21. Cazar RA, Jamka AJ, Tao F-M (1998) J Phys Chem A 102:5117–5123

    Article  CAS  Google Scholar 

  22. Snyder JA, Cazar RA, Jamka AJ, Tao F-M (1999) J Phys Chem A 103:7719–7724

    Article  CAS  Google Scholar 

  23. Li R-J, Li Z-R, Wu D, Hao X-Y, Li Y, Wang B-Q, Tao F-M, Sun CC (2003) Chem Phys Lett 372:893–898

    Article  CAS  Google Scholar 

  24. DeKock RL, Schipper LA, Dykhouse SC, Heeringa LP, Brandsen BM (2009) J Chem Educ 86(12):1459–1464

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  27. Lenz A, Ojamae L (2005) Phys Chem Chem Phys 7:1905–1911

    Article  CAS  Google Scholar 

  28. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley, New York, pp 213–232

  29. Lee HM, Suh SB, Lee JY, Tarakeshwar P, Kim KS (2000) J Chem Phys 112:9759–9772

    Article  CAS  Google Scholar 

  30. Silica MC, Muñoz-Caro C, Niño A (2005) ChemPhysChem 6:139–147

    Article  Google Scholar 

  31. Lozynski M, Rusinska-Roszak D, Mack HJ (1998) J Phys Chem A 102:2899–2903

    Article  CAS  Google Scholar 

  32. Odde S, Mhin BJ, Lee KH, Tarakeshwar P, Kim KS (2006) J Phys Chem A 110:7918–7924

    Article  CAS  Google Scholar 

  33. Boese AD, Martin JML, Klopper WJ (2007) J Phys Chem A 111:11122–11133

    Article  CAS  Google Scholar 

  34. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  35. Christie RA, Jordan KD (2001) J Phys Chem A 105:7551–7558

    Article  CAS  Google Scholar 

  36. Xantheas SS (2005) J Am Chem Soc 117:10373–10380

    Article  Google Scholar 

  37. Xantheas SS, Dunning TH Jr (1993) J Chem Phys 99:8774–8792

    Article  CAS  Google Scholar 

  38. Xantheas SS (1994) J Chem Phys 100:7523–7534

    Article  CAS  Google Scholar 

  39. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  40. Adamo C, Barone V (1998) J Chem Phys 108(2):664

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Peterson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Slavador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Revision E.02 edn. Gaussian, Inc., Wallingford

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision B.01 edn. Gaussian, Inc., Wallingford

  43. Song J-W, Tsuneda T, Sato T, Hirao K (2011) Theor Chem Acc. http://www.dx.doi.org/10.1007/s00214-011-0997-6

  44. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K (2011) Theor Chem Acc. http://www.dx.doi.org/10.1007/s00214-011-0914-z

  45. Radhakrishnan TP, Herndon WC (1991) Graph theoretical analysis of water clusters. J Phys Chem 95(26):10609–10617

    Article  CAS  Google Scholar 

  46. McDonald S, Ojamäe L, Singer SJ (1998) J Phys Chem A 102(17):2824–2832

    Article  CAS  Google Scholar 

  47. Biczysko M, Latajka Z (1999) Chem Phys Lett 313(1–2):366–373

    Article  CAS  Google Scholar 

  48. Barnes AJ, Latajka Z, Biczysko M (2002) J Mol Struct 614(1–3):11–21

    Article  CAS  Google Scholar 

  49. Abkowicz-Bienko A, Biczysko M, Latajka Z (2000) Comput Chem 24(3–4):303–309

    Article  CAS  Google Scholar 

  50. Li R-J, Li Z-R, Wu D, Chen W, Li Y, Wang B-Q, Sun C–C (2005) J Phys Chem A 109(4):629–634

    Article  CAS  Google Scholar 

  51. Cheung JT, Dixon DA, Herschbach DR (1988) J Phys Chem 92(9):2536–2541

    Article  CAS  Google Scholar 

  52. Blondel C, Delsart C, Goldfarb F (2001) J Phys B Atomic Mol Optical Phys 34(9):L281–L288

    Article  CAS  Google Scholar 

  53. Berzinsh U, Gustafsson M, Hanstorp D, Klinkmüller A, Ljungblad U, Mårtensson-Pendrill AM (1995) Phys Rev A 51(1):231–238

    Article  CAS  Google Scholar 

  54. Di Lonardo G, Douglas AE (1973) Can J Phys 51(4):434–445

    Article  CAS  Google Scholar 

  55. Michel M, Korolkov MV, Weitzel K-M (2002) Phys Chem Chem Phys 4(17):4083–4086

    Article  CAS  Google Scholar 

  56. Hunter EPL, Lias SG (1998) J Phys Chem Ref Data 27(3):413

    Article  CAS  Google Scholar 

  57. Solimannejad M, Scheiner S (2007) J Phys Chem A 111:4431–4435

    Article  CAS  Google Scholar 

  58. Gardenier GH, Johnson MA, McCoy AB (2009) J Phys Chem A 113(16):4772–4779

    Article  CAS  Google Scholar 

  59. Soloveichik PO, Donnell BA, Lester MI, Francisco JS, McCoy AB (2010) J Phys Chem A 114(3):1529–1538

    Article  CAS  Google Scholar 

  60. Dixon DA, Feller D, Peterson KA (2001) J Chem Phys 115(6):2576

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. We thank Laura A. Schipper and Stephanie C. Dykhouse for the preliminary work that they performed on this project. Computer hardware was provided by a Major Research Instrumentation Grant from the National Science Foundation, Award No. OCI-0722819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger L. DeKock.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 88 kb)

Supplementary material 2 (DOC 706 kb)

Appendix

Appendix

1.1 Empirical gauge of hydrogen bond versus ion-pair structure

We define a “reference” bond length and examine the relative difference between the reference bond length and that found in the molecule at hand. We use NH3·HF and NH3·HCl as our example molecules and employ our theoretical results to illustrate the method. Our empirical gauge relates the bond lengths \( {\text{X}}\overset {r_{1} } \longleftrightarrow {\text{H}}\overset {r_{2} } \longleftrightarrow {\text{N}} \) to reference bond lengths. It is the distortion between the actual bond length and a reference bond length for each bond that measures the extent to which the structure is classified as a hydrogen bond adduct versus an ion-pair structure. In the following paragraph, we employ the aug-cc-pVDZ set for our theoretical results. Where experimental work is known, we place that in parentheses directly after the theoretical value.

The free molecule HF has a bond length of 0.926 Å (0.917 Å), and the corresponding value for HCl is 1.295 Å (1.274 Å). These computed values are labeled r 1ref for HF and HCl, respectively. The second reference, r 2ref, is the N–H bond length in NH4 +; we chose its value to be 1.0217 Å, [60].

We then define the following quantities that refer to ion-pair character and hydrogen bond character.

$$ {\text{i-p character}} = \frac{{r_{1} - r_{{1{\text{ref}}}} }}{{r_{{1{\text{ref}}}} }} $$
$$ {\text{h-b character}} = \frac{{r_{2} - r_{{2{\text{ref}}}} }}{{r_{{2{\text{ref}}}} }} $$

The experimental structure of NH3·HF has not been reported, but the theoretical results are r 1 = 0.966 Å and r 2 = 1.662 Å. The corresponding theoretical values for NH3·HCl are r 1 = 1.370 Å and r 2 = 1.668 Å. From these results, we obtain i-p character = 0.043 and h-b character = 0.583 for NH3·HF and obtain i-p character = 0.058 and h-b character = 0.589 for NH3·HCl. In order to convert these into a percent contribution of each structure, we divide by a normalization factor, N, defined as the sum of these quantities.

$$ N = \frac{{r_{1} - r_{{1{\text{ref}}}} }}{{r_{{1{\text{ref}}}} }} + \frac{{r_{2} - r_{{2{\text{ref}}}} }}{{r_{{2{\text{ref}}}} }} $$

The percent ion-pair character and percent hydrogen bond character for a given molecular structure are defined as follows:

$$ \% {\text{i-p}} = \frac{{r_{1} - r_{{1{\text{ref}}}} }}{{Nr_{{1{\text{ref}}}} }} \times 100 $$
$$ \% {\text{h-b}} = \frac{{r_{2} - r_{{2{\text{ref}}}} }}{{Nr_{{2{\text{ref}}}} }} \times 100. $$

We obtain 93% h-b, 7% i-p for NH3·HF and 91% h-b, 9% i-p for NH3·HCl. These results provide a quantitative way to report the amount of distortion that the acid undergoes upon bonding to the base. They confirm that the hydrogen bond is overwhelmingly an adduct pair, and not an ion pair. They show that NH3·HCl is more “ionic” than NH3·HF, which makes qualitative sense, since chemists have many reasons to refer to HF as a weaker acid than HCl.

The empirical formula that we utilize here provides results that allow a quick empirical look at the nature of the molecular adduct. Scheiner [1] provided an alternative view based upon a parameter he called ρ defined as ρ = Δr(XH) − Δr(NH).

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeKock, R.L., Brandsen, B.M. & Strikwerda, J.R. Theoretical study of formation of ion pairs in (NH3·HCl)(H2O)6 and (NH3·HF)(H2O)6 . Theor Chem Acc 130, 871–881 (2011). https://doi.org/10.1007/s00214-011-1032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1032-7

Keywords

Navigation